PMT

Mark Scheme 4766 June 2005

Statistics 1 (4766)

Qn	Answer	Mk	Comment
1 (i)	Mean = $657/20 = 32.85$	B1 cao	
(ii)	Variance = $\frac{1}{19}(22839 - \frac{657^2}{20}) = 66.13$ Standard deviation = 8.13	M1 A1 cao	
	32.85 + 2(8.13) = 49.11	M1 ft	Calculation of 49.11
	none of the 3 values exceed this so no outliers	A1 ft	
2 (i)	Length of journey		
	$ \begin{array}{c} 120\\ 100\\ 80\\ 60\\ 40\\ 20\\ 0\\ 2\\ 4\\ 6\\ 8\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	G1 G1 G1	For calculating 38,68,89,103,112,120 Plotting end points Heights inc (0,0)
(ii)	Median = 1.7 miles	B1	
	Lower quartile $= 0.8$ miles	M1	
	Upper quartile = 3 miles	M1	
	Interquartile range = 2.2 miles	A1 ft	
(iii)	The graph exhibits positive skewness	E1	

Statistics 1 (4766) June 2005

3 (i)	$P(X = 4) = \frac{1}{40}(4)(5) = \frac{1}{2}$ (Answer given)	B1	Calculation must be seen
(ii)	$E(X) = (2+12+36+80)\frac{1}{40}$ So $E(X) = 3.25$	M1 A1 cao	Sum of rp
	Var $(X) = (2+24+108+320)\frac{1}{40} - 3.25^2$	M1 M1 dep	Sum of r ² p -3.25 ²
	= 11.35 - 10.5625		
	= 0.7875	A1 cao	
(iii)	Expected number of weeks = $\frac{6}{40}$ x45 = 6.75 weeks	M1 A1	Use of np
4 (i)	Number of choices $= \begin{pmatrix} 6 \\ 3 \end{pmatrix} = 20$	M1 A1	For $\begin{pmatrix} 6 \\ 3 \end{pmatrix}$
(ii)	Number of ways = $\binom{6}{3} \times \binom{7}{4} \times \binom{8}{5}$	M1 M1	Correct 3 terms Multiplied
	$= 20 \times 35 \times 56$		
	= 39200	A1 cao	
(iii)	Number of ways of choosing 12 questions = $\binom{21}{12}$ = 293930	M1	For $\begin{pmatrix} 21\\12 \end{pmatrix}$
	Probability of choosing correct number from each section = $39200/293930$ = 0.133	M1 ft A1 cao	

5									
(i)		1	2	3	4	5	6		
	1	1	2	3	4	5	6		
	2	2	2	6	4	10	6		
	3	3	6	3	12	15	6		
	4	4	4	12	4	20	12		
	5	5	10	15	20	5	30	B1	All correct
	6	6	6	6	12	30	6		
(ii)	(A) P(1	LCM >	> 6) = 2	1/3				B1	
	(<i>B</i>) P(1	LCM =	= 5n) =	11/36				B1	
			,						
	(<i>C</i>) P(1	I CM -	> 6 ∩ I	CM –	5n) –	2/9		M1	Use of diagram
			2011 L	<i>C</i> IVI –	511) —	21)		A1 cao	
(iii)									
(111)	$\frac{1}{3} \times \frac{11}{36}$	$\frac{1}{2} \neq \frac{2}{2}$						M1	Use of definition
	5 36	o 9							
	Hence	events	are no	t inder	enden	t		E1	
	Tience	e , ento		t macr	, enden	c			

(A)	$P(First team) = 0.9^3 = 0.729$	A1	
(<i>B</i>)	$P(\text{Second team}) = 0.9 \times 0.9 \times 0.1 + 0.9 \times 0.1 \times 0.5 + 0.1 \times 0.9 \times 0.5$	M1 M1	1 correct triple 3 correct triples added
	= 0.081 + 0.045 + 0.045 = 0.171	A1	added
(iii)	P(asked to leave) = 1 - 0.729 - 0.171		
	= 0.1	B1	
(iv)	P(Leave after two games given leaves)		
	$=\frac{0.1\times0.5}{0.1} = \frac{1}{2}$	M1 ft A1 cao	Denominator
(v)	P(at least one is asked to leave)	M1 ft	Calc'n of 0.9
	$=1-0.9^3 = 0.271$	M1 A1 cao	1 – ()³
(vi)	P(Pass a total of 7 games)		
	=P(First, Second, Second) + P(First, First, Leave after three games)	M1 M1 ft	Attempts both 0.729(0.171) ²
	$= 3 \times 0.729 \times 0.171^2 + 3 \times 0.729^2 \times 0.05$	M1 ft	0.05(0.729) ²
	= 0.064 + 0.080 = 0.144	M1 A1 cao	multiply by 3

7 (i)	$X \sim B\left(15, \frac{1}{6}\right)$		
	$P(X=0) = \left(\frac{5}{6}\right)^{15} = 0.065$	M1 A1 cao	$\left(\frac{5}{6}\right)^{15}$
(ii)	$P(X=4) = {\binom{15}{4}} \times {\left(\frac{1}{6}\right)^4} \times {\left(\frac{5}{6}\right)^{11}}$		$\left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^{11}$
	= 0.142 (or 0.9102-0.7685)	M1 A1 cao	multiply by $\binom{15}{4}$

PMT

-			
(iii)	$P(X > 3) = 1 - P(X \le 3)$	M1	
	$\Gamma(\Lambda \neq 3) = \Gamma \Gamma(\Lambda \equiv 3)$	A1	
	= 1 - 0.7685 = 0.232		
(iv)		B1	Definition of p
(A)	Let p = probability of a six on any throw $H_0: p = \frac{1}{6}$ $H_1: p < \frac{1}{6}$	B1	Both hypotheses
	$\mathbf{v} = \mathbf{p}(1 \mathbf{z}^{1})$		
	$X \sim B\left(15, \frac{1}{6}\right)$	M1	0.065
	P(X=0) = 0.065	M1 dep	Comparison
	$0.065 < 0.1$ and so reject H_0 Conclude that there is sufficient evidence at	E1 dep	
	the 10% level that the dice are biased against	-	
	sixes.	B 1	Both hypotheses
(<i>B</i>)	Let p = probability of a six on any throw		
(<i>b</i>)	$H_0: p = \frac{1}{6}$ $H_1: p > \frac{1}{6}$		
	$X \sim B\left(15, \frac{1}{6}\right)$	M1 M1 dep	0.09 Comparison
	$P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.910 = 0.09$ 0.09 < 0.1 and so reject H_0	E1 dep	
	Conclude that there is sufficient evidence at		
	the 10% level that the dice are biased in	E1	Contradictory
	favour of sixes.	E1	By chance
	Conclusions contradictory.		
(v)	Even if null hypothesis is true, it will be rejected 10% of the time purely by chance.		
	Or other sensible comments.		

Mark Scheme 4766 January 2006

Q 1	The range $= 55 - 15 = 40$	B1 CAO	
(i)			
	The interquartile range = $35 - 26 = 9$	B1 CAO	
			2
(ii)			
	$35 + 1.5 \ge 9 = 48.5$	M1 for 48.5 oe	
	$26 - 1.5 \ge 9 = 12.5$	M1 for 12.5 oe	
	Any value > 48.5 is an outlier (so 55 will be an		
	outlier),	A1 (FT their IQR in (i))	3
(iii)	One valid comment such as eg:	E1	
	Positively skewed		
	Middle 50% of data is closely bunched		1
		TOTAL	6
2			
(i)	Impossible because if 3 letters are correct, the	F1	
	fourth must be also.	E1	1
(::)			1
(ii)	There is only one way to place letters correctly.	E1	
	There are $4! = 24$ ways to arrange 4 letters.	E1 E1	
	OR:		
	$\frac{1}{4} \times \frac{1}{3} \times \frac{1}{2}$ NOTE: ANSWER GIVEN	B1 for $\frac{1}{4} \times \frac{1}{3}$ B1 for $\times \frac{1}{2}$	
	4 3 2	4 5 2	2
			4
	1 1 1		
(iii)	E(X) = 1 x $\frac{1}{3}$ + 2 x $\frac{1}{4}$ + 4 x $\frac{1}{24}$ = 1	M1 For $\sum xp$ (at least 2 non-	
(111)	3 4 24	zero terms correct)	
		A1 CAO	
	1 1 1	$\sum 2$	
	E(X ²) = 1 x $\frac{1}{3}$ + 4 x $\frac{1}{4}$ + 16 x $\frac{1}{24}$ = 2	M1 for $\sum x^2 p$ (at least 2 non-	
	3 4 24	zero terms correct)	
	\mathbf{C} \mathbf{W} (\mathbf{W}) \mathbf{C} 1^2	M1dep for – their $E(X)^2$	
	So Var(X) = 2 - 1 ² = 1		
	= 1	A1 FT their $E(X)$ provided	
		$\operatorname{Var}(X) > 0$	
			5
		TOTAL	8

3	$X \sim B(10, 0.2)$		
(i)	$P(X < 4) = P(X \le 3) = 0.8791$	M1 for $X \le 3$	
(-)	OR attempt to sum $P(X = 0, 1, 2, 3)$ using $X \sim$	A1	
	B(10,0.2) can score M1, A1		2
(ii)	Let p = the probability that a bowl is imperfect	B1 Definition of <i>p</i>	
	$H_0: p = 0.2$ $H_1: p < 0.2$	B1, B1	3
	$X \sim B(20,0.2)$ $P(X \le 3) = 0.2061$ $0.2061 > 5\%$ Cannot reject H_0 and so insufficient evidenceto claim a reduction.OR using critical region method:CR is $\{0\}$ B1, 2 not in CR M1, A1 as above	B1 for 0.2061 seen M1 for this comparison A1 <i>dep</i> for comment <u>in context</u>	3
		TOTAL	8
4 (i)	The company could increase the mean weight. The company could decrease the standard deviation.	B1 CAO B1	
(ii)	Sample mean = 11409/25 = 456.36	B1	2
(11)	$S_{xx} = 5206937 - \frac{11409^2}{25} = 325.76$ Sample s.d = $\sqrt{\frac{325.76}{24}} = 3.68$	M1 for S_{xx} A1	
		TOTAL	3
5	$P(A \cap B) = 0.4$	TOTALB1 CAO	5
(i)	$\Gamma(\Pi + D) = 0.4$	Dieno	1
(ii)	P(C U D) = 0.6	B1 CAO	1
(iii)	Events B and C are mutually exclusive.	B1 CAO	1
(iv)	P(B) = 0.6, P(D) = 0.4 and P(B \cap D) = 0.2	B1 for $P(B \cap D) = 0.2$ soi	
	$0.6 \ge 0.4 \neq 0.2$ (so B and D not independent)	E1	2
		TOTAL	5
6 (i)	Number of selections $= \begin{pmatrix} 12 \\ 7 \end{pmatrix} = 792$	M1 for $\begin{pmatrix} 12 \\ 7 \end{pmatrix}$ A1 CAO	
/•• `			2
(ii)	Number of arrangements $= 7! = 5040$	M1 for 7!, A1 CAO	2
		TOTAL	4

7	Mean score	=(2x8+3x)	$x^{2} + 4x6 + 5$	(+4)/11 =	M1 for $\sum fx/11$	
(i)		X			A1 CAO	
	6.36				AICAO	
						2
(ii)	40 Frequency Density				G1 Linear sensible scales	
					GI Linear sensible scales	
	30				G1 fds of 8, 28, 38, 26, 6 or 4 <i>k</i> ,	
					14k, 19k, 13k, 3k for sensible	
	20				values of k either on script or	
					on graph.	
	10				C1 (dan an raasanahla attampt	
					G1 (dep on reasonable attempt at fd) Appropriate label for	
	0 4 4.5 5	5 5.5 6	6.5 7	7.5 8 8.5	vertical scale eg 'Frequency	
			Mean GCS	E Score	density', 'frequency per $\frac{1}{2}$	
					unit', 'students per mean	
					GCSE score'. (allow Key)	3
(iii)	Mid	f	fx	fx²		
	point, x	0	10	200	B1 mid points	
	5 5.75	<u> </u>	40 80.5	200 462.875		
	6.25	14	118.75	742.1875	B1FT $\sum fx$ and $\sum fx^2$	
	6.75	13	87.75	592.3125		
	7.5	6	45	337.5		
		60	372	2334.875		
	Sample mea	n = 372/60	= 6.2		B1 CAO	
		2				
	$S_{xx} = 2334.$	$875 - \frac{372^2}{2}$	= 28.475		M1 for their S	
		60			M1 for their S_{xx}	
	Sample s.d =	= 28.475	= 0.695		A1 CAO	
	Sampie sia	V 59	0.070			5
A \		· · ·		50 0		
(iv)	Prediction o			= 50.2	M1 For $13 \times 7.4 - 46$	
(w)	So predicted Prediction o			- 25 5	A1 dep on 50.2 (or 50) seen M1 For 13 x 5.5 – 46	2
(v)	r rediction o	1 score = 15	$5 \times 3.3 = 40$	- 23.3	$101170113 \times 5.5 - 40$	
	So predicted	l grade wou	ld be D/E		A1 dep on 25.5 (or 26 or 25)	
	(allow D or	E)			seen	
	Because sco	•••	•	m 20 to 30,	E1 For explanation of	
	OR (for D)			1	conversion – logical	
	OR (for E) p	bast E but no	ot up to D b	oundary	statement/argument that	3
(vi)	Mean $= 13 \times$	<u>x 6 2 _ 16 -</u>	34.6		supports their choice. B1 FT their 6.2	3
	Standard de			9.035	M1 for 13 x their 0.695	
					A1 FT	3
					TOTAL	18

8	P(all jam)		
(i)	- (j)	M1 5 x 4 x 3 or $\begin{pmatrix} 5\\3 \end{pmatrix}$ in	
	5 4 3	numerator	
	$=\frac{5}{12}\times\frac{4}{11}\times\frac{3}{10}$	M1 12 x 11 x 10 or $\binom{12}{3}$ in	
	$=\frac{1}{22}=0.04545$		
	22 22 22	denominator	
		A1 CAO	
			3
(ii)	P(all same)	M1 Sum of 3 reasonable triples	
	$= \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} + \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} + \frac{3}{12} \times \frac{2}{11} \times \frac{1}{10}$	or combinations M1 Triples or combinations	
	12 11 10 12 11 10 12 11 10	correct	
	$=\frac{1}{22}+\frac{1}{55}+\frac{1}{220}=\frac{3}{44}=0.06818$	A1 CAO	
	$-\frac{1}{22}+\frac{1}{55}+\frac{1}{220}-\frac{1}{44}=0.00818$	AICAO	3
(iii)	P(all different)	M1 5,4,3	
	$= 6 \times \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}$ $= \frac{3}{11} = 0.2727$	M1 6× three fractions or $\begin{pmatrix} 12\\3 \end{pmatrix}$	
		denom.	
	$=\frac{3}{11}=0.2727$	A1 CAO	
			3
(iv)	P(all jam given all same) = $\frac{\frac{1}{22}}{\frac{3}{44}} = \frac{2}{3}$		
	P(all jam given all same) = $\frac{\overline{22}}{2}$ = $\frac{2}{2}$	M1 Their (i) in numerator	
	$\frac{3}{44}$ 3	M1 Their (ii) in denominator	
	/ 44	A1 CAO	
			3
(v)	P(all jam exactly twice)	M1 for $\binom{5}{2}$ x	
	$= \binom{5}{2} \times \left(\frac{1}{22}\right)^2 \times \left(\frac{21}{22}\right)^3 = 0.01797$	M1 for their $p^2 q^3$	
		A1 CAO	
(*)			3
(vi)	P(all jam at least once) $(21)^5$	M1 for their q^5	
	$=1-\left(\frac{21}{22}\right)^5=0.2075$	M1 indep for $1 - 5^{\text{th}}$ power	
	(22)	A1 CAO	
			3
		TOTAL	18

Mark Scheme 4766 June 2006

Q1			
(i)	A C C C C C C C C C C C C C C C C C C C	G1 Labelled linear scales G1 Height of lines	
(ii)	Negotive (ekourpeee)	B1	2
(iii)	Negative (skewness)	B1 B1	1
(,	$\Sigma fx = 123$ so mean = $123/25 = 4.92$ o.e. $S_{xx} = 681 - \frac{123^2}{25} = 75.84$ M.s.d = $\frac{75.84}{25} = 3.034$	M1 for S_{xx} attempted A1 FT their 4.92	3
(iv)	Total for 25 days is 123 and totals for 31 days is 155. Hence total for next 6 days is 32 and so mean = 5.33	M1 31 x 5 – 25xtheir 4.92 A1 FT their 123	2
			_
		TOTAL	8
Q2 (i)	$P(A \cap B) = P(A)P(B \mid A) = \frac{7}{10} \times \frac{3}{7}$	M1 Product of these fractions	
(i)	$P(A \cap B) = P(A)P(B A) = \frac{7}{10} \times \frac{3}{7}$ $\rightarrow P(A \cap B) = 0.3$ o.e.	M1 Product of these	
	$P(A \cap B) = P(A)P(B A) = \frac{7}{10} \times \frac{3}{7}$ $\rightarrow P(A \cap B) = 0.3$ o.e. A (.4 (.3 .2 .1 .1))	M1 Product of these fractions	8
(i)		M1 Product of these fractions A1 B1FT either 0.4 or 0.2 in correct place B1FT all correct and	8 2
(i) (ii)		M1 Product of these fractions A1 B1FT either 0.4 or 0.2 in correct place B1FT all correct and labelled	8 2
(i) (ii)	$P(B A) \neq P(B), 3/7 \neq 0.5$	M1 Product of these fractions A1 B1FT either 0.4 or 0.2 in correct place B1FT all correct and labelled E1 Correct comparison E1 <i>dep</i> for 'not	8 2 2
(i) (ii) (iii)	P(<i>B</i> <i>A</i>) \neq P(<i>B</i>), 3/7 \neq 0.5 Unequal so not independent	M1 Product of these fractions A1 B1FT either 0.4 or 0.2 in correct place B1FT all correct and labelled E1 Correct comparison E1 <i>dep</i> for 'not independent'	8 2 2

June 2006

Mark Scheme

June 2006

Q3 (i)	P(X = 1) = 7k, $P(X = 2) = 12k$, $P(X = 3) = 15k$, $P(X = 4) = 16k50k = 1$ so $k = 1/50$	M1 for addition of four multiples of <i>k</i>	2
		A1 ANSWER GIVEN	
(ii)	$E(X) = 1 \times 7k + 2 \times 12k + 3 \times 15k + 4 \times 16k = 140k = 2.8$	M1 for Σxp (at least 3 terms correct)	
	OR E(X) = $1 \times \frac{7}{50} + 2 \times \frac{12}{50} + 3 \times \frac{15}{50} + 4 \times \frac{16}{50} = \frac{140}{50} = 2.8 \text{ oe}$	A1 CAO	
	2.0 00	M1 $\Sigma x^2 p$ (at least 3 terms correct)	
	Var(X) = 1 x 7k + 4 x 12k + 9 x 15k + 16 x 16k - 7.84 = 1.08	M1 dep for – their E(X) PNB provided Var(X)	
	OR Var(X) = 1 x $^{7}/_{50}$ + 4 x $^{12}/_{50}$ + 9 x $^{15}/_{50}$ + 16 x $^{16}/_{50}$ -7.84	> 0 A1 FT their E(<i>X</i>)	5
	= 8.92 - 7.84 = 1.08		
		TOTAL	7
Q4 (i)	$4 \times 5 \times 3 = 60$	M1 for 4 x 5 x 3 A1 CAO	2
(ii)	(A) $\binom{4}{2} = 6$ (B) $\binom{4}{2}\binom{5}{2}\binom{3}{2} = 180$	B1 ANSWER GIVEN	
	(B) $\binom{4}{2}\binom{5}{2}\binom{3}{2} = 180$	B1 CAO	2
(iii)	(A) 1/5	B1 CAO	
	(B) $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3} = \frac{2}{5}$	M1 for $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}$	3
		A1	
		TOTAL	7
Q5	$P(X = 2) = \binom{3}{2} \times 0.87^2 \times 0.13 = 0.2952$	M1 0.87 ² x 0.13	
(i)		M1 $\binom{3}{2}$ x $p^2 q$ with p+q=1 A1 CAO	3
(ii)	In 50 throws expect 50 (0.2952) = 14.76 times	B1 FT	1
(iii)	P (two 20's twice) = $\binom{4}{2} \times 0.2952^2 \times 0.7048^2 = 0.2597$	M1 $0.2952^2 \times 0.7048^2$	
		A1 FT their 0.2952	2
		TOTAL	6

June 2006

Q6	Positive	G1 for left hand set of	
(i)		branches fully correct	
(i)	0.05 Negative	including labels and probabilities	
	0.1 0.2 Positive	G1 for right hand set of branches fully correct	
	Fake O. 8 Negative		2
(ii)	P (test is positive) = (0.9)(0.95) + (0.1)(0.2) = 0.875	M1 Two correct pairs added A1 CAO	2
(iii)	P (test is correct) = (0.9)(0.95) + (0.1)(0.8) = 0.935	M1 Two correct pairs added A1 CAO	2
(iv)	P (Genuine Positive)	M1 Numerator	
	= 0.855/0.875	M1 Denominator A1 CAO	
	= 0.977		3
(v)	P (Fake Negative) = 0.08/0.125 = 0.64	M1 Numerator	
		M1 Denominator A1 CAO	3
(vi)	EITHER: A positive test means that the painting is almost certain to be genuine so no need for a further test.	E1FT	
	However, more than a third of those paintings with a negative result are genuine so a further test is needed.	E1FT	
			2
	NOTE: Allow sensible alternative answers		
(vii)	P (all 3 genuine) = (0.9 x 0.05 x 0.96) ³	M1 for 0.9 x 0.05 (=0.045)	
	$= (0.045 \times 0.96)^3$	M1 for complete correct triple product	4
	$= (0.0432)^3$	M1 <i>indep</i> for cubing	
	= 0.0000806	A1 CAO	
		TOTAL	18

PMT

June 2006

Q7	<i>X</i> ~ B(20, 0.1)		
(i)	(A) $P(X = 1) = {\binom{20}{1}} \times 0.1 \times 0.9^{19} = 0.2702$	M1 0.1 x 0.9 ¹⁹	
		M1 $\begin{pmatrix} 20\\1 \end{pmatrix}$ x pq^{19}	
		A1 CAO	
	OR from tables $0.3917 - 0.1216 = 0.2701$	OR: M2 for 0.3917 – 0.1216 A1 CAO	3
	(B) $P(X \ge 1) = 1 - 0.1216 = 0.8784$	M1 P(X=0) provided that $P(X \ge 1)=1-P(X \le 1)$ not seen	
		M1 1-P(X=0) A1 CAO	3
(ii)	EITHER: $1 - 0.9^n \ge 0.8$	M1 for 0.9 ⁿ	
	$0.9^{n} \le 0.2$ Minimum <i>n</i> = 16	M1 for inequality	
	OR (using trial and improvement): Trial with 0.9 ¹⁵ or 0.9 ¹⁶ or 0.9 ¹⁷	M1 M1	
	$1 - 0.9^{15} = 0.7941 < 0.8$ and $1 - 0.9^{16} = 0.8147 > 0.8$		
	Minimum $n = 16$	A1 CAO	
	NOTE: $n = 16$ unsupported scores SC1 only		3
(iii)	(A) Let p = probability of a randomly selected rock containing a fossil (for population) H ₀ : p = 0.1	B1 for definition of p B1 for H ₀ B1 for H ₁	
	$H_{1}: p < 0.1$		2
			3
	(B) Let X ~ B(30, 0.1)	M1 for attempt to find $P(X \le 0)$ or $P(X \le 1)$	
	$P(X \le 0) = 0.0424 < 5\%$	using binomial	
	$P(X \le 1) = 0.0424 + 0.1413 = 0.1837 > 5\%$	M1 for both attempted	
		M1 for comparison of either of the above with	
	So critical region consists only of 0.	5%	
		A1 for critical region dep on both	4
		comparisons (NB	
		Answer given)	
	(C)		
	2 does not lie in the critical region.	M1 for comparison	
		A1 for conclusion in context	
	So there is insufficient evidence to reject the null hypothesis and we conclude that it seems that 10% of rocks in this area		
	contain fossils.		2
		TOTAL	18

PMT

Mark Scheme 4766 January 2007

GENERAL INSTRUCTIONS

Marks in the mark scheme are explicitly designated as M, A, B, E or G.

M marks ("method") are for an attempt to use a correct method (not merely for stating the method).

A marks ("accuracy") are for accurate answers and can only be earned if corresponding **M** mark(s) have been earned. Candidates are expected to give answers to a sensible level of accuracy in the context of the problem in hand. The level of accuracy quoted in the mark scheme will sometimes deliberately be greater than is required, when this facilitates marking.

B marks are independent of all others. They are usually awarded for a single correct answer.

E marks ("explanation") are for explanation and/or interpretation. These will frequently be sub divisible depending on the thoroughness of the candidate's answer.

G marks ("graph") are for completing a graph or diagram correctly.

- Insert part marks in **right-hand** margin in line with the mark scheme. For fully correct parts tick the answer. For partially complete parts indicate clearly in the body of the script where the marks have been gained or lost, in line with the mark scheme.
- Please indicate incorrect working by ringing or underlining as appropriate.
- Insert total in **right-hand** margin, ringed, at end of question, in line with the mark scheme.
- Numerical answers which are not exact should be given to at least the accuracy shown. Approximate answers to a greater accuracy *may* be condoned.
- Probabilities should be given as fractions, decimals or percentages.
- FOLLOW-THROUGH MARKING SHOULD NORMALLY BE USED WHEREVER POSSIBLE. There will, however, be an occasional designation of '**c.a.o.**' for "correct answer only".
- Full credit MUST be given when correct alternative methods of solution are used. If errors occur in such methods, the marks awarded should correspond as nearly as possible to equivalent work using the method in the mark scheme.
- The following notation should be used where applicable:

FT	Follow-through marking
BOD	Benefit of doubt
ISW	Ignore subsequent working

4766

Q	Mean = 127.6/13 = 9.8	M1 for 127.6/13 soi
1	Median = 8.6	A1 CAO B1 CAO
• (i)	Median = 8.6 Midrange = 14.5	BI CAO
/		
(ii)	Mean slightly inflated due to the outlier	B1
	Median good since it is not affected by the outlier	B1
	Midrange poor as it is highly inflated due to the out	tlier B1
		TOTAL
Q		G1 labelled linear
2	12	scales on both axes
(i)	8	G1 heights
	Number of absentees	
(ii)	$M_{000} = \frac{99}{108}$	
	Mean = $\frac{99}{50} = 1.98$	B1 for mean
	99^2 (110.00)	M1 for attempt at S_{xx}
	$S_{xx} = 315 - \frac{99^2}{50}$ (= 118.98)	
	$rmsd = \sqrt{\frac{118.98}{50}} = 1.54$	
	$rmsd = \sqrt{\frac{10000}{50}} = 1.54$	A1 CAO
	NB full marks for correct results from recommended me	ethod which
	is use of calculator functions	
(iii)	New mean = 30 - 1.98 = 28.02	B1 FT their mean
	New rmsd = 1.54 (unchanged)	B1 FT their rmsd
		TOTAL
	time freq width f dens	
Q	0- 34 5 6.8	M1 for fds
3	5- 153 5 30.6	A1 CAO
(i)	10- 188 10 18.8	
	20- 73 10 7.3 30- 27 10 2.7	Accept any suitable unit
	40- 5 20 0.25	for fd such as eg freq per 5 mins.
	frequency density	
	30	G1 linear scales on
	20	both axes and label
		G1 width of bars
	10	G1 height of bars
	time	
	Positive skewness	
/!!\	L POSITIVE SKEWDESS	B1 CAO (indep)
(ii)		TOTAL (

Q

4(i)

(ii)

(iii)

5				Ма	ark Sch	eme			January 2007	
	r	1	2	3	4	5	6]	B1 for 3 <i>k</i> , 5 <i>k</i> , 7 <i>k</i> , 9 <i>k</i>	
	P(X = r)	k	3 <i>k</i>	5 5k	7 <i>k</i>	9k	11 <i>k</i>		M1 for sum of six multiples of $k = 1$	
	36 <i>k</i> = 1 , s	o k = -3	$\frac{1}{36}$						A1 CAO MUST BE FRACTION IN SIMPLEST FORM	3
1	E(<i>X</i>) =								M1 for Σ <i>rp</i>	
	$1 \times \frac{1}{36} + 2 >$	$\left(\frac{3}{36}+3\right)$	$3 \times \frac{5}{36} +$	$-4 \times \frac{7}{36}$	$+5\times\frac{9}{36}$	-+6×	$\frac{11}{36} = \frac{16}{3}$	$\frac{51}{6} = 4.47$	A1 CAO	2
	P(<i>X</i> =16) =	$6 \times \left(\frac{1}{6}\right)$	/						M1 for 6 × M1 indep for $\left(\frac{1}{6}\right)^3$	
			=	$\frac{6}{216} = \frac{1}{3}$	$\frac{1}{36}$				A1 CAO	3
									TOTAL	8
	P(jacket ar	nd tie)	= 0.4 ×	0.3 = 0	.12				M1 for multiplying A1 CAO	2
	ſ	Jac	ket		\sim	Tie			G1 for two intersecting circles labelled	
		(G1 for 0.12 and either 0.28 or 0.08	
			.28	0.	12 0.0	8			G1 for remaining	

	(6)	
$=\frac{6}{216}=\frac{1}{36}$	A1 CAO	3
	TOTAL	8
P(jacket and tie) = $0.4 \times 0.3 = 0.12$	M1 for multiplying A1 CAO	2
Jacket	G1 for two intersecting circles labelled	
	G1 for 0.12 and either 0.28 or 0.08	
	G1 for remaining probabilities	
0.52	<u>Note</u> FT their 0.12 provided < 0.2	3
(A) $P(jacket or tie) = P(J) + P(T) - P(J \cap T)$		
= 0.4 + 0.2 - 0.12 = 0.48 $= 0.28 + 0.12 + 0.08 = 0.48$	B1 FT	
(<i>B</i>) P(no jacket or no tie) = 0.52 + 0.28 + 0.08 = 0.88		
OR $0.6 + 0.8 - 0.52 = 0.88$ OR $1 - 0.12 = 0.88$	Note FT their 0.12 provided < 0.2	3
	TOTAL	8
	(A) P(jacket or tie) =P(J) + P(T) - P(J) (J) = 0.4 + 0.2 - 0.12 = 0.48 OR = 0.28 + 0.12 + 0.08 = 0.48 (B) P(no jacket or no tie) = 0.52 + 0.28 + 0.08 = 0.88 OR = 0.6 + 0.8 - 0.52 = 0.88	$=\frac{6}{216} = \frac{1}{36}$ A1 CAO TOTAL P(jacket and tie) = $0.4 \times 0.3 = 0.12$ M1 for multiplying A1 CAO G1 for two intersecting circles labelled G1 for 0.12 and either 0.28 or 0.08 G1 for remaining probabilities Note FT their 0.12 provided < 0.2 (A) P(jacket or tie) = P(J) + P(T) - P(J) T) = 0.4 + 0.2 - 0.12 = 0.48 OR = 0.28 + 0.12 + 0.08 = 0.48 (B) P(no jacket or no tie) = 0.52 + 0.28 + 0.08 = 0.48 OR = 0.6 + 0.8 - 0.52 = 0.88 OR OR = 1 - 0.12 = 0.88 D2

	PMT

Q	Median = 3370	B1	
6 (i)	$Q_1 = 3050$ $Q_3 = 3700$ Inter-quartile range = $3700 - 3050 = 650$	B1 for Q_3 or Q_1 B1 for IQR	3
(ii)	Lower limit $3050 - 1.5 \times 650 = 2075$ Upper limit $3700 + 1.5 \times 650 = 4675$ Approx 40 babies below 2075 and 5 above 4675 so total 45	B1 B1 M1 (for either) A1	4
(iii)	Decision based on convincing argument: eg 'no, because there is nothing to suggest that they are not genuine data items and these data may influence health care provision'	E2 for convincing argument	2
(iv)	All babies below 2600 grams in weight	B2 CAO	2
(v)	(A) $X \sim B(17, 0.12)$ $P(X = 2) = {\binom{17}{2}} \times 0.12^2 \times 0.88^{15} = 0.2878$ (B) $P(X > 2)$ $= 1 - (0.2878 + {\binom{17}{1}} \times 0.12 \times 0.88^{16} + 0.88^{17})$ = 1 - (0.2878 + 0.2638 + 0.1138) = 0.335	M1 $\binom{17}{2} \times p^2 \times q^{15}$ M1 indep $0.12^2 \times 0.88^{15}$ A1 CAO M1 for P(X=1)+ P(X=0) M1 for 1 - P(X \le 2) A1 CAO	3
(vi)	Expected number of occasions is 33.5	B1 FT	3 1
()			•
		TOTAL	18

Mark Scheme

January 2007

•		(-)2		I
Q 7	(A)	P(both) = $\left(\frac{2}{3}\right)^2 = \frac{4}{9}$	B1 CAO	
(i)	(<i>D</i>)	P(one) = $2 \times \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$	B1 CAO	
	(D)	$P(OIIe) = 2 \times \frac{-}{3} \times \frac{-}{3} = \frac{-}{9}$	B1 CAO	
	(<i>C</i>)	$P(neither) = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$		3
(ii)	•	endence necessary because otherwise, the probability seed germinating would change according to whether	E1	
	or not May n growir	the other one germinates. ot be valid as the two seeds would have similar ng conditions eg temperature, moisture, etc. low valid alternatives	E1	2
(iii)		ted number = $2 \times \frac{2}{3} = \frac{4}{3}$ (= 1.33)	B1 FT	
		$= 0 \times \frac{1}{9} + 1 \times \frac{4}{9} + 4 \times \frac{4}{9} = \frac{20}{9}$	M1 for $E(X^2)$	
	Var(X)	$=\frac{20}{9} - \left(\frac{4}{3}\right)^2 = \frac{4}{9} = 0.444$	A1 CAO	3
	NB us	e of npq scores M1 for product, A1CAO	-	
(iv)	Expec	e of npq scores M1 for product, A1CAO t $200 \times \frac{8}{9} = 177.8$ plants	M1 for 200 $\times \frac{8}{9}$	
	So exp	pect 0.85 × 177.8 = 151 onions	M1 dep for × 0.85 A1 CAO	3
(v)	Let p = H ₀ : p	~ B(18, <i>p</i>) = probability of germination (for population) = 0.90 < 0.90	B1 for definition of p B1 for H ₀ B1 for H ₁	
	So not Conclu	14) = $0.0982 > 5\%$ t enough evidence to reject H ₀ ude that there is not enough evidence to indicate that rmination rate is below 90%.	M1 for probability M1 dep for comparison A1 E1 for conclusion in context	7
	M1 fo	use of critical region method scores r region {0,1,2,, 13} r 14 does not lie in critical region then A1 E1 as per scheme		
			TOTAL	18

PMT

Mark Scheme 4766 June 2007

Q1 (i)	$\binom{8}{4}$ ways to select = 70	M1 for $\begin{pmatrix} 8\\4 \end{pmatrix}$	2
		A1 CAO	
(ii)	4! = 24	B1 CAO	1
		тоты	2
		TOTAL	3
Q2			
(i)	Amount 0- <20 20- <50 50- <100 100- <200	B1 for amounts	2
	Frequency 800 480 400 200	B1 for frequencies	2
(ii)	Total \approx	M1 for their midpoints ×	
	$10 \times 800 + 35 \times 480 + 75 \times 400 + 150 \times 200 = \text{\pounds}84800$	their frequencies	2
		A1 CAO	
		TOTAL	4
Q3 (i)	Mean = $\frac{3026}{56} = 54.0$	21.0	
		B1 for mean	
	$S_{xx} = 178890 - \frac{3026^2}{56} = 15378$	M1 for attempt at S_{xx}	
		With for all empt at S_{xx}	2
	$s = \sqrt{\frac{15378}{55}} = 16.7$	A1 CAO	3
(ii)	$\overline{x} + 2s = 54.0 + 2 \times 16.7 = 87.4$	M1 for their \overline{x} +2×their s	
	So 93 is an outlier	A1 FT for 87.4 and	2
(iii)	New mean = $1.2 \times 54.0 - 10 = 54.8$	comment B1 FT	
(111)	New $s = 1.2 \times 16.7 = 20.1$	M1A1 FT	3
		TOTAL	8
Q4 (i)	(A) P(at least one) $=\frac{36}{50} = \frac{18}{25} = 0.72$	B1 aef	
(1)	50 25	M1 for (9+6+5)/50	
	(B) $P(-1) = 9 + 6 + 5 - 20 - 2 = 0.4$	A1 aef	
	(B) P(exactly one) = $\frac{9+6+5}{50} = \frac{20}{50} = \frac{2}{5} = 0.4$		3
(ii)	13	M1 for denominator 24	
	P(not paper aluminium) = $\frac{13}{24}$	or 24/50 or 0.48	2
	2 .	A1 CAO	
(iii)	18 32 576	M1 for both fractions	
	P(one kitchen waste) = $2 \times \frac{18}{50} \times \frac{32}{49} = \frac{576}{1225} = 0.470$	M1 for $2 \times \text{product of}$	
	50 77 1225	both, or sum of 2 pairs	3
		A1	
		TOTAL	8

Q5 (i)	11^{th} value is 4,12 th value is 4 so median is 4 Interquartile range = $5 - 2 = 3$	B1 M1 for either quartile	
(ii)	 No, not valid any two valid reasons such as : the sample is only for two years, which may not be representative the data only refer to the local area, not the whole of Britain even if decreasing it may have nothing to do with global warming more days with rain does not imply more total rainfall a five year timescale may not be enough to show a long term trend 	A1 CAO B1 E1 E1	3
		TOTAL	6
Q6 (i)	Either P(all 4 correct) = $\frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{35}$	M1 for fractions, or $^{7}C_{4}$ seen	2
	or P(all 4 correct) = $\frac{1}{{}^7C_4} = \frac{1}{35}$	A1 NB answer given	
(ii)	$E(X) = 1 \times \frac{4}{35} + 2 \times \frac{18}{35} + 3 \times \frac{12}{35} + 4 \times \frac{1}{35} = \frac{80}{35} = 2\frac{2}{7} = 2.29$ $E(X^{2}) = 1 \times \frac{4}{35} + 4 \times \frac{18}{35} + 9 \times \frac{12}{35} + 16 \times \frac{1}{35} = \frac{200}{35} = 5.714$ $Var(X) = \frac{200}{35} - \left(\frac{80}{35}\right)^{2} = \frac{24}{49} = 0.490 \text{ (to 3 s.f.)}$	M1 for Σrp (at least 3 terms correct) A1 CAO M1 for $\Sigma x^2 p$ (at least 3 terms correct) M1 <i>dep</i> for – their E(X) ² A1 FT their E(X) provided Var(X) > 0	5
		TOTAL	7

	Section B		
Q7 (i)	Positive result 0.95 Has the disease	G1 probabilities of result	
	0.03 0.10 Has the disease	G1 probabilities of disease	
	0.90 Clear 0.91 0.01 Has the disease	G1 probabilities of clear G1 labels	4
	Negative result O.99 Clear		
(ii)	P(negative and clear) = 0.91×0.99	M1 for their 0.91×0.99	2
(iii)	= 0.9009 P(has disease) = 0.03 × 0.95 + 0.06 × 0.10 + 0.91 × 0.01 = 0.0285 + 0.006 + 0.0091 = 0.0436	A1 CAO M1 three products M1 <i>dep</i> sum of three products A1 FT their tree	3
(iv)	P(negative has disease) = $\frac{P(negative and has disease)}{P(has disease)} = \frac{0.0091}{0.0436} = 0.2087$	M1 for their 0.01×0.91 or 0.0091 on its own or as numerator M1 <i>indep</i> for their 0.0436 as denominator A1 FT their tree	3
(v)	Thus the test result is not very reliable. A relatively large proportion of people who have the disease will test negative.	E1 FT for idea of 'not reliable' or 'could be improved', etc E1 FT	2
(vi)	P(negative or doubtful and declared clear) = $0.91 + 0.06 \times 0.10 \times 0.02 + 0.06 \times 0.90 \times 1$ = $0.91 + 0.00012 + 0.054 = 0.96412$	M1 for their 0.91 + M1 for either triplet M1 for second triplet A1 CAO	
		TOTAL	4

Q8	$X \sim B(17, 0.2)$		
(i)	$\mathbf{P}(X \ge 4) = 1 - \mathbf{P}(X \le 3)$	B1 for 0.5489	
	= 1 - 0.5489 = 0.4511	M1 for 1 – their 0.5489	3
		A1 CAO	
(ii)	$E(X) = np = 17 \times 0.2 = 3.4$	M1 for product	2
		A1 CAO	
(iii)	P(X=2) = 0.3096 - 0.1182 = 0.1914		
	P(X=3) = 0.5489 - 0.3096 = 0.2393	B1 for 0.2393	
	P(X = 4) = 0.7582 - 0.5489 = 0.2093	B1 for 0.2093	3
	So 3 applicants is most likely	A1 CAO <i>dep</i> on both	
		B1s	
(iv)	(A) Let $p =$ probability of a randomly selected maths graduate	B1 for definition of p in	
	applicant being successful (for population)	context	
	H ₀ : $p = 0.2$		
	H ₁ : $p > 0.2$	B1 for H ₀	
	(<i>B</i>) H_1 has this form as the suggestion is that mathematics	B1 for H_1	4
	graduates are more likely to be successful.	E1	
(v)	Let $X \sim B(17, 0.2)$	B1 for 0.1057	
	$P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.8943 = 0.1057 > 5\%$	B1 for 0.0377	
	$P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9623 = 0.0377 < 5\%$	M1 for at least one	
		comparison with 5%	4
	So critical region is {7,8,9,10,11,12,13,14,15,16,17}	A1 CAO for critical	
		region <i>dep</i> on M1 and at	
		least one B1	
(vi)	Because $P(X \ge 6) = 0.1057 > 10\%$	E1	
Ň	Either: comment that 6 is still outside the critical region		2
	Or comparison $P(X \ge 7) = 0.0377 < 10\%$	E1	
		TOTAL	18

Mark Scheme

January 2008

Q1	Mode = 7	B1 cao	
(i)	Median = 12.5	B1 cao	2
()			
(ii)	Positive or positively skewed	E1	1
	(A) Median	E1 cao	
(iii)	(B) There is a large outlier or possible outlier of 58 / figure of 58.	E1indep	2
	Just 'outlier' on its own without reference to either 58 or large scores E0		
	Accept the large outlier affects the mean (more) E1		
(iv)	There are $14.75 \times 28 = 413$ messages So total cost = 413×10 pence = £41.30	$M1$ for 14.75 \times 28 but 413 can also imply the mark A1 cao	2
		TOTAL	7
Q2 (i)	$\binom{4}{3} \times 3! = 4 \times 6 = 24 \text{ codes or } {}^{4}P_{3} = 24 \text{ (M2 for } {}^{4}P_{3}\text{)}$ Or $4 \times 3 \times 2 = 24$	M1 for 4 M1 for ×6 A1	3
(ii)	$4^3 = 64$ codes	M1 for 4 ³ A1 cao	2
		TOTAL	5
Q3			
(i)	Probability = $0.3 \times 0.8 = 0.24$	M1 for 0.8 from (1-0.2) A1	2
	<i>Either:</i> $P(AUB) = P(A) + P(B) - P(A \cap B)$	M1 for adding 0.3 and	
(ii)	$= 0.3 + 0.2 - 0.3 \times 0.2$	0.2	
		M1 for subtraction of	
	= 0.5 - 0.06 = 0.44	(0.3 × 0.2) A1 cao	
	<i>Or:</i> $P(AUB) = 0.7 \times 0.2 + 0.3 \times 0.8 + 0.3 \times 0.2$	M1 either of first terms	
	= 0.14 + 0.24 + 0.06 = 0.44	M1 for last term A1	3
	$Or: P(AUB) = 1 - P(A' \cap B')$	M1 for 0.7 × 0.8 or 0.56	
	$= 1 - 0.7 \times 0.8 = 1 - 0.56 = 0.44$	M1 for complete method as seen A1	
(iii)	$P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{0.06}{0.44} = \frac{6}{44} = 0.136$	M1 for numerator of their 0.06 only M1 for 'their 0.44' in denominator A1 FT (must be valid p)	3
		TOTAL	8

4766 Statistics 1

January 2008

		TOTAL	8
		correct terms A1 cao	
	$\{0.49 + 0.147 + 0.1029 = 0.7399\}$	term M1 for sum of all three	7
(iii)	$0.7^2 + 0.3 \times 0.7^2 + 0.7 \times 0.3 \times 0.7^2 = 0.7399$ or 0.74(0)	M1 for any correct term M1 for any other correct	4
(ii)	SS, JSS, JSJSS	B1, B1, B1 (-1 each error or omission)	3
Q5 (i)	Impossible because the competition would have finished as soon as Sophie had won the first 2 matches	E1	1
		TOTAL	8
(iii)		G1 labelled linear scales G1 height of lines	2
(ii)	Expected cost = 2.952 × £45000 = £133000 (3sf)	B1 FT (no extra multiples / divisors introduced at this stage)	1
	$Var(X) = 10.184 - 2.952^2 = 1.47$ (to 3 s.f.)	M1 for $E(X^2) - E(X)^2$ Provided ans > 0 A1 FT their $E(X)$ but not a wrong $E(X^2)$	
	$E(X^2) = 1 \times 0.2 + 4 \times 0.16 + 9 \times 0.128 + 16 \times 0.512 = 10.184$	M1 for $\Sigma x^2 p$ at least 3 terms correct	5
Q4 (i)	$E(X) = 1 \times 0.2 + 2 \times 0.16 + 3 \times 0.128 + 4 \times 0.512 = 2.952$ Division by 4 or other spurious value at end loses A mark	M1 for Σ <i>rp</i> (at least 3 terms correct) A1 cao	

January 2008

G6 (1)Mean = $\frac{180.6}{12}$ = 15.05 or 15.1B1 for mean $S_{xx} = 3107.56 - \frac{180.6^2}{12}$ or 3107.56 - 12(their 15.05) ² = (389.53)B1 for attempt at S_{xx} $s = \sqrt{\frac{389.53}{11}}$ = 5.95 or better NB Accept answers seen without working (from calculator)A1 cao(ii) $\overline{x} + 2s = 15.05 + 2 \times 5.95 = 26.95$ So no outliersM1 for attempt at either M1 for both A1 for limits and conclusion FT their mean and sd(iii)New mean = 1.8 × 15.05 + 2 \times 5.95 = 3.15 So no outliersB1FTNew s = 1.8 × 5.95 = 10.7M1 A1FT M1 A1FT3(iv)New York has a higher mean or ' is on average' higher (ce) Cumulative frequency (0)E1FT using ⁰ F (\overline{x} dep) E1FT using $0^{1}F$ (σ dep) 2(v) \overline{y} <br< th=""><th></th><th>Section B</th><th></th><th></th></br<>		Section B		
$S_{xx} = 3107.56 - \frac{180.6^2}{12} \text{ or } 3107.56 - 12(\text{their } 15.05)^2 = (389.53) s = \sqrt{\frac{389.53}{11}} = 5.95 \text{ or better}NB Accept answers seen without working (from calculator)(ii) \overline{x} + 2s = 15.05 + 2 \times 5.95 = 26.95\overline{x} - 2s = 15.05 - 2 \times 5.95 = 3.15So no outliers(iii) New mean = 1.8 \times 15.05 + 32 = 59.1New s = 1.8 \times 5.95 = 10.7(iv) New York has a higher mean or ' is on average' higher (oe)New York has greater spread /range /variation or SD (oe)(v) \frac{1}{10000000000000000000000000000000000$				<u> </u>
(ii) $s = \sqrt{\frac{389.53}{11}} = 5.95$ or better NB Accept answers seen without working (from calculator) (iii) $\bar{x} + 2s = 15.05 + 2 \times 5.95 = 26.95$ $\bar{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$ So no outliers (iii) New mean = $1.8 \times 15.05 + 32 = 59.1$ New $s = 1.8 \times 5.95 = 10.7$ New York has a higher mean or ' is on average' higher (oe) New York has greater spread /range /variation or SD (oe) (v) $Upper bound (70) 100 110 120 150 170 190 Cumulative frequencies (may be implied from graph). Ignore cf of 0 attins stage. No mid-point of 105 but not have a signed from the stage. No mid-point or LCB plots. (v) NB all G marks dep on attempt at cumulative frequencies. NB All G marks dep on attempt at cumulative frequencies. Line on graph at cf = 43.2(soi) or used 90th percentile = 166 stage = 166stage = 166stage$	(i)	$\frac{12}{12} = 15.05 \text{ or } 15.1$	B1 for mean	
(ii) $s = \sqrt{\frac{389.53}{11}} = 5.95$ or better NB Accept answers seen without working (from calculator) (iii) $\bar{x} + 2s = 15.05 + 2 \times 5.95 = 26.95$ $\bar{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$ So no outliers (iii) New mean = $1.8 \times 15.05 + 32 = 59.1$ New $s = 1.8 \times 5.95 = 10.7$ New York has a higher mean or ' is on average' higher (oe) New York has greater spread /range /variation or SD (oe) (v) $Upper bound (70) 100 110 120 150 170 190 Cumulative frequencies (may be implied from graph). Ignore cf of 0 attins stage. No mid-point of 105 but not have a signed from the stage. No mid-point or LCB plots. (v) NB all G marks dep on attempt at cumulative frequencies. NB All G marks dep on attempt at cumulative frequencies. Line on graph at cf = 43.2(soi) or used 90th percentile = 166 stage = 166stage = 166stage$		$S_{xx} = 3107.56 - \frac{180.6^2}{12}$ or $3107.56 - 12$ (their 15.05) ² =	M1 for attempt at S_{xx}	
NB Accept answers seen without working (from calculator)(ii) $\bar{x} + 2s = 15.05 + 2 \times 5.95 = 26.95$ $\bar{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$ M1 for attempt at either M1 for both A1 for limits and conclusion FT their mean and sd(iii)New mean = 1.8 × 15.05 + 32 = 59.1B1FTNew s = 1.8 × 5.95 = 10.7M1 A1FT(iv)New York has a higher mean or ' is on average' higher (oe)E1FT using ${}^{0}F$ (\bar{x} dep)New York has greater spread /range /variation or SD (oe)E1FT using ${}^{0}F$ (\bar{x} dep)(v) $\frac{1}{100 \pm 100 $				3
NB Accept answers seen without working (from calculator)(ii) $\bar{x} + 2s = 15.05 + 2 \times 5.95 = 26.95$ $\bar{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$ M1 for attempt at either M1 for both A1 for limits and conclusion FT their mean and sd(iii)New mean = 1.8 × 15.05 + 32 = 59.1B1FTNew s = 1.8 × 5.95 = 10.7M1 A1FT(iv)New York has a higher mean or ' is on average' higher (oe)E1FT using ${}^{0}F$ (\bar{x} dep)New York has greater spread /range /variation or SD (oe)E1FT using ${}^{0}F$ (\bar{x} dep)(v) $\frac{1}{100 \pm 100 $		$\overline{389.53}$ = 05 or bottom		
(ii) $\overline{x} + 2s = 15.05 + 2 \times 5.95 = 26.95$ $\overline{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$ M1 for attempt at either M1 for both A1 for limits and conclusion FT their mean and sd(iii)New mean = $1.8 \times 15.05 + 32 = 59.1$ B1FTNew s = $1.8 \times 5.95 = 10.7$ M1 A1FT3(iv)New York has a higher mean or ' is on average' higher (oe)E1FT using 0F (\overline{x} dep)New York has greater spread /range /variation or SD (oe)E1FT using 0F ($\overline{\sigma}$ dep)2(v)Image: the state		$s = \sqrt{\frac{11}{11}} = 5.95$ or better	A1 cao	
$\overline{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$ M1 for both A1 for limits and conclusion FT their mean and sd(iii)New mean = $1.8 \times 15.05 + 32 = 59.1$ B1FTNew $s = 1.8 \times 5.95 = 10.7$ M1 A1 FT3(iv)New York has a higher mean or ' is on average' higher (oe)E1FT using ${}^0F(\overline{x} dep)$ New York has greater spread /range /variation or SD (oe)E1FT using ${}^0F(\overline{x} dep)$ (v)Upper bound $\overline{(70)}$ 100 110 120 150 170 190 $\overline{(2mulative frequency} (0) 6 14 24 35 45 48$ B1 for all correct cumulative frequencies (inear from 70 to 190) ignore $\times 70$ vertical: 0 to 5 but not beyond 100 (no inequality scales)5(vi)NB all G marks dep on attempt at cumulative frequencies NB All G marks dep on attempt at cumulative frequencies Line on graph at cf = 43.2(soi) or usedG1 for joining all of 'their points'(line or smooth curve) AND now including (70,0)2M1 for use of 43.2 A1FT but dep on 3rd G mark earnedM1 for use of 43.2 A1FT but dep on 3rd G mark earnedM1 for use of 43.2 A1FT but dep on 3rd G mark earned				
Note that the second	(ii)		•	
 (iii) New mean = 1.8 × 15.05 + 32 = 59.1 (iii) New mean = 1.8 × 15.05 + 32 = 59.1 B1FT B1FT New S = 1.8 × 5.95 = 10.7 (iv) New York has a higher mean or ' is on average' higher (oe) E1FT using ⁰F (x̄ dep) E1FT using ⁰F (x̄ dep) E1 for all correct cumulative frequencies (may be implied from graph). Ignore cf of 0 at this stage G1 for linear scales (linear from 70 to 190) ignore x < 70 vertical: 10 to 50 but not beyond 100 (no inequality scales) G1 for linear scales (linear from 70 to 150 but not beyond 100 (no inequality scales) G1 for labels G1 for labels G1 for labels G1 for joining all of 'their points' (line or smooth curve) AND now including (70,0) NB All G marks dep on attempt at cumulative frequencies Line on graph at of = 43.2(soi) or used 90th percentile = 166 				
(iii)New mean = $1.8 \times 15.05 + 32 = 59.1$ B1FTNew $s = 1.8 \times 5.95 = 10.7$ M1 A1FT3(iv)New York has a higher mean or ' is on average' higher (oe)E1FT using ${}^{0}F(\bar{x} dep)$ New York has greater spread /range /variation or SD (oe)E1FT using ${}^{0}F(\bar{x} dep)$ 2(v) $\boxed{Upper bound (70) 100 110 120 150 170 190}{Cumulative frequency (0) 6 14 24 35 45 48}$ B1 for all correct cumulative frequencies (may be implied from graph). Ignore cf of 0 at this stage(vi) $Upper bound (50 but not beyond 100 (no inequality scales)$ G1 for linear scales (linear from 70 to 190) ignore $\times \times 70$ vertical: to 50 but not beyond 100 (no inequality scales)(vi)NB all G marks dep on attempt at cumulative frequenciesG1 for joining all of 'their points'(line or smooth curve) AND now including (70.0)2NB All G marks dep on attempt at cumulative frequenciesM1 for use of 43.2 A1FT but dep on 3rd G mark earned2				3
New $s = 1.8 \times 5.95 = 10.7$ M1 A1FT3(iv)New York has a higher mean or ' is on average' higher (oe)E1FT using ${}^{0}F(\bar{x} dep)$ (iv)New York has greater spread /range /variation or SD (oe)E1FT using ${}^{0}F(\bar{x} dep)$ (v)Upper bound (70) 100 110 120 150 170 190 Cumulative frequency (0) 6 14 24 35 45 48B1 for all correct cumulative frequencies (may be implied from graph). Ignore cf of 0 at this stage(v)Image for the stage of			mean and sd	
 (iv) New York has a higher mean or ' is on average' higher (oe) E1FT using ⁰F (x̄ dep) New York has greater spread /range /variation or SD (oe) E1FT using ⁰F (x̄ dep) 2 (v) Upper bound (70) 100 110 120 150 170 190 Cumulative frequency (0) 6 14 24 35 45 48 Upper bound (70) 100 110 120 150 170 190 Cumulative frequency (0) 6 14 24 35 45 48 (v) Upper bound (70) 100 110 120 150 170 190 Cumulative frequency (0) 6 14 24 35 45 48 (v) Upper bound (70) 100 110 120 150 170 190 Cumulative frequencies (may be implied from graph). Ignore cf of 0 at this stage G1 for linear scales (linear from 70 to 190) (lignore x < 70 vertical: to to 50 but not beyond 100 (no inequality scales) G1 for labels G1 for points plotted as (UCB, their cf). Ignore (70,0) at this stage. No mid point or LCB plots. NB all G marks dep on attempt at cumulative frequencies NB All G marks dep on attempt at cumulative frequencies Line on graph at cf = 43.2(soi) or used 90th percentile = 166 	(iii)	New mean = $1.8 \times 15.05 + 32 = 59.1$	B1FT	
 (iv) New York has a higher mean or ' is on average' higher (oe) E1FT using ⁰F (x̄ dep) 2 New York has greater spread /range /variation or SD (oe) E1FT using ⁰F (x̄ dep) 2 (v) Upper bound (70) 100 110 120 150 170 190 Cumulative frequency (0) 6 14 24 35 45 48 Upper bound (70) 100 110 120 150 170 190 at this stage G1 for linear scales (linear from 70 to 190) ligner x < 70 vertical: 0 to 50 but not beyond 100 (no inequality scales) G1 for points plotted as (UCB, their cf). Ignore (70) at this stage. No mid point or LCB plots. NB all G marks dep on attempt at cumulative frequencies. NB All G marks dep on attempt at cumulative frequencies Line on graph at cf = 43.2(soi) or used 90th percentile = 166 		New $s = 1.8 \times 5.95 = 10.7$		3
 (v) Upper bound (70) 100 110 120 150 170 190 Cumulative frequency (0) 6 14 24 35 45 48 B1 for all correct (may be implied from graph). Ignore cf of 0 at this stage G1 for linear scales (linear from 70 to 190) ignore x < 70 vertical: 0 to 50 but not beyond 100 (no inequality scales) (vi) NB all G marks dep on attempt at cumulative frequencies. NB All G marks dep on attempt at cumulative frequencies Line on graph at cf = 43.2(soi) or used 90th percentile = 166 St for all correct cumulative frequencies M1 for use of 43.2 A1FT but dep on 3rd G mark earned 	(iv)	New York has a higher mean or ' is on average' higher (oe)	E1FT using ⁰ F (\overline{x} dep)	
Upper bound(70)100110120150170190Cumulative frequency(0)61424354548Image: Cumulative frequency(0)61424354548Image: Cumulative frequency(0)61424354548Image: Cumulative frequencies(0)61424354548Image: Cumulative frequencies(0)61424354548Image: Cumulative frequencies(0)61424354548Image: Cumulative frequencies(0)61424354548Image: Cumulative frequencies(0)(0)(0)(0)(0)(0)(0)(0)Image: Cumulative frequencies(0)<		New York has greater spread /range /variation or SD (oe)	E1FT using 0 F (σ dep)	2
(vi) (vi) NB all G marks dep on attempt at cumulative frequencies. NB All G marks dep on attempt at cumulative frequencies. Line on graph at cf = 43.2(soi) or used 90th percentile = 166 (vi) 100 110 120 150 170 190 (vi) 100 112 120 150 170 190 (vi) 100 124 35 45 48 (unulative frequencies (may be implied from graph). Ignore cf of 0 at this stage (G1 for linear scales (linear from 70 to 190) ignore x < 70 vertical: 0 to 50 but not beyond 100 (no inequality scales) G1 for labels G1 for joining all of 'their points'(line or smooth curve) AND now including (70,0) 20 M1 for use of 43.2 A1FT but dep on 3rd G mark earned (Including (70,0) (Including	(v)		D1 for all correct	
(vi) NB all G marks dep on attempt at cumulative frequencies Line on graph at cf = 43.2(soi) or used 900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Upper bound (70) 100 110 120 150 170 190		
(vi) NB all G marks dep on attempt at cumulative frequencies Line on graph at cf = 43.2(soi) or used 90th percentile = 166 at this stage G1 for linear scales (inear from 70 to 190) ignore x < 70 vertical: 0 to 50 but not beyond 100 (no inequality scales) G1 for labels G1 for points plotted as (UCB, their cf). Ignore (70.0) at this stage. No mid – point or LCB plots. G1 for use of 43.2 A1FT but dep on 3rd G mark earned at this stage G1 for linear scales (inear from 70 to 190) ignore x < 70 vertical: 0 to 50 but not beyond 100 (no inequality scales) G1 for joints plotted as (UCB, their cf). Ignore (70.0) at this stage. No mid – point or LCB plots. G1 for joining all of 'their points'(line or smooth curve) AND now including (70,0) 2		Cumulative frequency (0) 6 14 24 35 45 48	(may be implied from	
 (vi) (vi) NB all G marks dep on attempt at cumulative frequencies. Line on graph at cf = 43.2(soi) or used 90th percentile = 166 (vi) 				
(vi) (vi)			<u>at this stage</u>	
(vi)Image: Second s		> 50		
(vi)Image: Second s				
(vi)Image: Second s		30		
(vi) 0 50 100 150 200 G1 for points plotted as (UCB, their cf). Ignore (70.0) at this stage. No mid point or LCB plots. G1 for joining all of 'their points'(line or smooth curve) AND now including (70.0) G1 for joining all of 'their points'(line or smooth curve) AND now including (70.0) 2 Line on graph at cf = 43.2(soi) or used 90th percentile = 166 M1 for use of 43.2 A1FT but dep on 3rd G mark earned M1 for use of 43.2 A1FT but dep on 3rd G mark earned M1 for use of 43.2 M1		20		
(vi) 0 50 100 150 200 G1 for points plotted as (UCB, their cf). Ignore (70.0) at this stage. No mid point or LCB plots. G1 for joining all of 'their points'(line or smooth curve) AND now including (70.0) G1 for joining all of 'their points'(line or smooth curve) AND now including (70.0) 2 Line on graph at cf = 43.2(soi) or used 90th percentile = 166 M1 for use of 43.2 A1FT but dep on 3rd G mark earned M1 for use of 43.2 A1FT but dep on 3rd G mark earned M1 for use of 43.2 M1			C1 for lobala	
(vi) Hours G1 for points plotted as (UCB, their cf). Ignore (70,0) at this stage. No mid – point or LCB plots. NB all G marks dep on attempt at cumulative frequencies. G1 for joining all of 'their points'(line or smooth curve) AND now including (70,0) NB All G marks dep on attempt at cumulative frequencies M1 for use of 43.2 A1FT but dep on 3rd G mark earned			GTIOLIADEIS	5
(vi) NB all G marks dep on attempt at cumulative frequencies. G1 for joining all of 'their points'(line or smooth curve) AND now including (70,0) G1 for use of 43.2 Line on graph at cf = 43.2(soi) or used 90th percentile = 166 M1 for use of 43.2 A1FT but dep on 3rd G mark earned				0
(vi)NB all G marks dep on attempt at cumulative frequencies.G1 for joining all of 'their points'(line or smooth curve) AND now including (70,0)2NB All G marks dep on attempt at cumulative frequenciesM1 for use of 43.2 A1FT but dep on 3rd G mark earned2		Tiours		
NB all G marks dep on attempt at cumulative frequencies. G1 for joining all of 'their points'(line or smooth curve) AND now including (70,0) 2 NB All G marks dep on attempt at cumulative frequencies M1 for use of 43.2 A1FT but dep on 3rd G mark earned 2	(vi)			
NB All G marks dep on attempt at cumulative frequencies 'their points'(line or smooth curve) AND now including (70,0) 2 Line on graph at cf = 43.2(soi) or used M1 for use of 43.2 A1FT but dep on 3rd G mark earned 2	(1)	NB all G marks dep on attempt at cumulative frequencies.	G1 for joining all of	
NB All G marks dep on attempt at cumulative frequenciesincluding (70,0)2Line on graph at cf = 43.2(soi) or used 90th percentile = 166M1 for use of 43.2 A1FT but dep on 3rd G mark earned2				
Line on graph at cf = 43.2(soi) or used 90th percentile = 166				
Line on graph at cf = 43.2(soi) or used 90th percentile = 166A1FT but dep on 3rd G mark earned		NB All G marks dep on attempt at cumulative frequencies	including (70,0)	2
Line on graph at cf = 43.2(soi) or used 90th percentile = 166A1FT but dep on 3rd G mark earned			M1 for use of 43.2	
			A1FT but dep on 3rd G	
		90th percentile = 166	mark earned	
			TOTAL	18

4766

	<i>X</i> ~ B(12, 0.05)		
(i)	(A) $P(X = 1) = {\binom{12}{1}} \times 0.05 \times 0.95^{11} = 0.3413$	M1 0.05×0.95^{11}	
		M1 $\binom{12}{1} \times pq^{11}$ (p+q) =	
	OR from tables $0.8816 - 0.5404 = 0.3412$	1 A1 cao OR: M1 for 0.8816 seen and M1 for	3
	(B) $P(X \ge 2) = 1 - 0.8816 = 0.1184$	subtraction of 0.5404 A1 cao M1 for 1 – P(X \leq 1) A1 cao	2
	(C) Expected number $E(X) = np = 12 \times 0.05 = 0.6$	M1 for 12×0.05 A1 cao (= 0.6 seen)	
• •	<i>Either</i> : $1 - 0.95^n \le \frac{1}{3}$ $0.95^n \ge \frac{2}{3}$	M1 for equation in <i>n</i>	
	$n \le \log \frac{2}{3}$ /log0.95, so $n \le 7.90$ Maximum $n = 7$	M1 for use of logs A1 cao	
	<i>Or:</i> (using tables with $p = 0.05$): n = 7 leads to $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6983 = 0.3017$ (< ¹ / ₃) or 0.6983 (> 2/3) n = 8 leads to	M1indep	
	$P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6634 = 0.3366 (> \frac{1}{3})$ or 0.6634 (< 2/3) Maximum $n = 7$ (total accuracy needed for tables)	M1indep A1 cao dep on both M's	3
	Or: (using trial and improvement):		
	$1 - 0.95^7 = 0.3017$ (< 1/3) or $0.95^7 = 0.6983$ (> 2/3) $1 - 0.95^8 = 0.3366$ (> 1/3) or $0.96^8 = 0.6634$ (< 2/3) Maximum $n = 7$ (3 sf accuracy for calculations)	M1indep (as above) M1indep (as above)	
	NOTE: $n = 7$ unsupported scores SC1 only	A1 cao dep on both M's	
	Let $X \sim B(60, p)$ Let $p =$ probability of a bag being faulty H ₀ : $p = 0.05$ H ₁ : $p < 0.05$	B1 for definition of p B1 for H ₀ B1 for H ₁	8
	$P(X \le 1) = 0.95^{60} + 60 \times 0.05 \times 0.95^{59} = 0.1916 > 10\%$	M1 A1 for probability	
	So not enough evidence to reject H ₀	M1 for comparison A1	
	Conclude that there is not enough evidence to indicate that the new process reduces the failure rate or scientist incorrect/ wrong.	E1	
		TOTAL	18

4766 Statistics 1

Q1	Mean = 7.35 (or better)	B2cao $\sum fx = 323.5$	
(i)	Standard deviation: 3.69 – 3.70 (awfw)	B2cao $\sum fx^2 = 2964.25$	
	Allow $s^2 = 13.62$ to 13.68	(B1) for variance s.o.i.o	
	Allow rmsd = 3.64 - 3.66 (awfw)	(B1) for rmsd	
	After B0, B0 scored then if at least 4 correct mid-points seen or used. {1.5, 4, 6, 8.5, 15}	(B1) mid-points	
	Attempt of their mean = $\frac{\sum fx}{44}$, with 301 \leq fx \leq 346 and fx	(B1) 6.84≤mean≤7.86	4
	strictly from mid-points not class widths or top/lower boundaries.		
(ii)	Upper limit = $7.35 + 2 \times 3.69 = 14.73$ or 'their sensible mean' + 2 × 'their sensible s.d.'	M1 (with s.d. < mean)	
	So there could be one or more outliers	E1 dep on B2, B2 earned and comment	2
		TOTAL	6
Q2 (i)	$P(W) \times P(C) = 0.20 \times 0.17 = 0.034$ $P(W \cap C) = 0.06$ (given in the question)	M1 for multiplying or 0.034 seen	
	Not equal so not independent (Allow 0.20 \times 0.17 \neq 0.06 or \neq p (W \cap C) so not independent).	A1 (numerical justification needed)	2
(ii)	$W 0.1 \\ 0.69$	G1 for two overlapping circles labelled G1 for 0.06 and either 0.14 or 0.11 in the correct places G1 for all 4 correct probs in the correct places (including the 0.69) NB No credit for Karnaugh maps here	3
(iii)			
	$P(W C) = \frac{P(W \cap C)}{P(C)} = \frac{0.06}{0.17} = \frac{6}{17} = 0.353 \text{ (awrt 0.35)}$	M1 for 0.06 / 0.17 A1 cao	2

(iv)	Children are more likely than adults to be able to speak	E1FT Once the correct	1
. ,	Welsh or 'proportionally more children speak Welsh than	idea is seen, apply ISW	
	adults'		
	Do not accept: 'more Welsh children speak Welsh than		
	adults'		
		TOTAL	8
00	(4) 0.5 0.25 1	IUIAL	•
Q3 (i)	(A) $0.5 + 0.35 + p + q = 1$	B1 p + q in a correct	1
.,	so $p + q = 0.15$	equation before they	
	(B) $0 \times 0.5 + 1 \times 0.35 + 2p + 3q = 0.67$	reach p + q =0.15	
	so $2p + 3q = 0.32$		
	(C) from above $2p + 2q = 0.30$	B1 2p + 3q in a correct equation before they	1
	so $q = 0.02, p = 0.13$	reach $2p + 3q = 0.32$	
		(B1) for any 1 correct	
		answer	2
		B2 for both correct answers	
(ii)		M1 $\Sigma x^2 p$ (at least 2	
	$E(X^2) = 0 \times 0.5 + 1 \times 0.35 + 4 \times 0.13 + 9 \times 0.02 = 1.05$	non zero terms correct)	
	Var(X) = 'their 1.05' – 0.67 ² = 0.6011 (awrt 0.6)	M1dep for (-0.67^2) , provided Var $(X) > 0$	
		A1 cao (No n or n-1	3
	(M1, M1 can be earned with their p ⁺ and q ⁺ but not A mark)	divisors) TOTAL	7
Q4	X ~ B(8, 0.05)		
(i)	(A) $P(X = 0) = 0.95^8 = 0.6634$ 0.663 or better	M1 0.95 ⁸ A1 CAO	
	Or weing tables $\mathbf{D}(\mathbf{K}_{1}, 0) = 0.00000$	Or B2 (tables)	2
	Or using tables $P(X = 0) = 0.6634$	M1 for $P(X = 1)$ (allow)	
	(B) $P(X = 1) = {\binom{8}{1}} \times 0.05 \times 0.95^7 = 0.2793$	M1 for $P(X = 1)$ (allow 0.28 or better)	2
		M1 for $1 - P(X \le 1)$	3
	P(X > 1) = 1 - (0.6634 + 0.2793) = 0.0573	must have both probabilities	
		A1cao (0.0572 –	
	Or using tables $P(X > 1) = 1 - 0.9428 = 0.0572$	0.0573)	
		M1 for $P(X \le 1) 0.9428$	
		M1 for $1 - P(X \le 1)$ A1 cao (must end	
		in2)	
(ii)	Expected number of dove $-2E0 \times 0.0572 = 14.2$ sumt	M1 for 250 x prob(B)	
	Expected number of days = $250 \times 0.0572 = 14.3$ awrt	A1 FT but no rounding at	2
		end	-
		TOTAL	7

PMT

4766

Q5 (i)	Let p = probability of remembering or naming all items (for population) (whilst listening to music.) H ₀ : p = 0.35 H ₁ : p > 0.35 H ₁ : p > 0.35	B1 for definition of p B1 for H ₀ B1 for H ₁ E1dep on p>0.35 in H ₀	
	probability will be increased/ improved/ got better /gone up.	In words not just because p > 0.35	4
(ii)	Let $X \sim B(15, 0.35)$ <i>Either</i> : $P(X \ge 8) = 1 - 0.8868 = 0.1132 > 5\%$ Or 0.8868 < 95% So not enough evidence to reject H ₀ (Accept H _o)	<i>Either:</i> M1 for probability (0.1132) M1 dep for comparison A1 dep	
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	E1dep on all previous marks for conclusion in context Or:	
	Or:		
	Critical region for the test is {9,10,11,12,13,14,15} 8 does not lie in the critical region.	M1 for correct CR(no omissions or additions) M1 dep for 8 does not lie in CR A1 dep	
	So not enough evidence to reject H ₀		
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	E1dep on all previous marks for conclusion in context	
	 Or:	Or:	
	The smallest critical region that 8 could fall into is {8, 9, 10, 11, 12, 13, 14, and 15}. The size of this region is 0.1132	M1 for CR{8,9,15} and size = 0.1132	
	0.1132 > 5%	M1 dep for comparison	
	So not enough evidence to reject H_0	A1 dep	
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved (when listening to music)	E1dep on all previous marks for conclusion in context	
		TOTAL	4
		TOTAL	8

	Section B		
Q6 (i)	(A) P(both rest of UK) = 0.20×0.20 = 0.04	M1 for multiplying A1cao	2
	(B) Either: All 5 case P(at least one England) = $(0.79 \times 0.20) + (0.79 \times 0.01) + (0.20 \times 0.79) + (0.01 \times 0.79) +$ (0.79×0.79) = 0.158 + 0.0079 + 0.158 + 0.0079 + 0.6241 = 0.9559 Or P(at least one England) = 1 - P(neither England) = 1 - (0.21 × 0.21) = 1 - 0.0441 = 0.9559	M1 for any correct term (3case or 5case) M1 for correct sum of all 3 (or of all 5) with no extras A1cao (condone 0.96 www)	
	or listing all = $1 - \{(0.2 \times 0.2) + (0.2 \times 0.01) + (0.01 \times 0.20) + (0.01 \times 0.01)\}$ = $1 - \{(0.04 + 0.002 + 0.002 + 0.0001)\}$ = $1 - (0.0441)$ = 0.9559	Or M1 for 0.21×0.21 or for (**) fully enumerated or 0.0441 seen M1 dep for $1 - (1^{st} part)$ A1cao	
	Or: All 3 case P(at least one England) = = $0.79 \times 0.21 + 0.21 \times 0.79 + 0.79^2$ = $0.1659 + 0.1659 + 0.6241$ = 0.9559	See above for 3 case	3
	(<i>C</i>) <i>Either</i> 0.79 x 0.79 + 0.79 x 0.2 + 0.2 x 0.79 + 0.2 x 0.2 = 0.9801 Or	M1 for sight of all 4 correct terms summed A1 cao (condone 0.98 www) or	
	$0.99 \times 0.99 = 0.9801$ Or $1 - \{ 0.79 \times 0.01 + 0.2 \times 0.01 + 0.01 \times 0.79 + 0.01 \times 0.02 + 0.01^2 \} = 1 - 0.0199$ = 0.9801	M1 for 0.99 x 0.99 A1cao <i>Or</i> M1 for everything 1 - {} A1cao	2
(ii)	P(both the rest of the UK neither overseas) $= \frac{P(\text{the rest of the UK and neither overseas})}{P(\text{the rest of the UK and neither overseas})}$	M1 for numerator of 0.04 or 'their answer to (i)(A)'	
	$= \frac{P(\text{neither overseas})}{P(\text{neither overseas})}$ $= \frac{0.04}{0.9801} = 0.0408$ {Watch for: $\frac{answer(A)}{answer(C)}$ as evidence of method (p <1)}	M1 for denominator of 0.9801 or 'their answer to (i) (C)' A1 FT ($0) 0.041 atleast$	3

4766

Mark Scheme

June 2008

PMT

(iii)			
	(A) Probability = $1 - 0.79^5$ = $1 - 0.3077$ = 0.6923 (accept awrt 0.69)	M1 for 0.79 ⁵ or 0.3077 M1 for 1 – 0.79 ⁵ dep A1 CAO	
	see additional notes for alternative solution		
	$(B) \ 1 - 0.79^n > 0.9$		
	EITHER: $1 - 0.79^n > 0.9 \text{ or } 0.79^n < 0.1$ (condone = and \geq throughout) but not reverse inequality $n > \frac{\log 0.1}{\log 0.79}$, so $n > 9.768$ Minimum $n = 10$ Accept $n \geq 10$	M1 for equation/inequality in n (accept either statement opposite) M1(indep) for process of using logs i.e. $\frac{\log a}{\log b}$ A1 CAO	3
	OR (using trial and improvement): Trial with 0.79^9 or 0.79^{10} $1 - 0.79^9 = 0.8801$ (< 0.9) or $0.79^9 = 0.1198$ (> 0.1)	M1(indep) for sight of 0.8801 or 0.1198 M1(indep) for sight of 0.9053 or 0.09468	3
	$1 - 0.79^{10} = 0.9053 (> 0.9)$ or $0.79^{10} = 0.09468 (< 0.1)$	A1 dep on both M's cao	
	Minimum $n = 10$ Accept $n \ge 10$		
	NOTE: $n = 10$ unsupported scores SC1 only		
		TOTAL	16

Mark Scheme

PMT

07			
Q7 (i)	Positive	B1	1
(ii)	Number of people = 20 × 33 (000) + 5 × 58 (000) = 660 (000) + 290 (000) = 950 000	M1 first term M1(indep) second term A1 cao NB answer of 950 scores M2A0	3
(iii)	(<i>A</i>) $a = 1810 + 340 = 2150$ (<i>B</i>) Median = age of 1 385 (000 th) person or 1385.5 (000) Age 30, cf = 1 240 (000); age 40, cf = 1 810 (000) Estimate median = (30) + $\frac{145}{570} \times 10$ Median = 32.5 years (32.54) If no working shown then 32.54 or better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1	M1 for sum A1 cao 2150 or 2150 thousand but not 215000 B1 for 1 385 (000) or 1385.5 M1 for attempt to interpolate $\frac{145k}{570k} \times 10$ (2.54 or better suggests this) A1 cao min 1dp	2
(iv)	Frequency densities: 56, 65, 77, 59, 45, 17 (accept 45.33 and 17.43 for 45 and 17)	B1 for any one correct B1 for all correct (soi by listing or from histogram)	
		Note: all G marks below <i>dep</i> on attempt at frequency density, NOT frequency G1 Linear scales on both axes (no inequalities) G1 Heights FT their listed fds or all must be correct. Also widths. All blocks joined	
		G1 Appropriate label for vertical scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). OR f.d.	5

PMT

(v)			
(•)	Any two suitable comments such as:	E1	
	Outer London has a greater proportion (or %) of people under 20 (or almost equal proportion)	E1	
	The modal group in Inner London is 20-30 but in Outer London it is 30-40		
	Outer London has a greater proportion (14%) of aged 65+		
	<u>All</u> populations in <u>each</u> age group are higher in Outer London		
	Outer London has a more evenly spread distribution or balanced distribution (ages) o.e.		2
(vi)	Mean increase ↑ median unchanged (-) midrange increase ↑	Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4	
	standard deviation increase \uparrow interquartile range unchanged. (-)		4
		TOTAL	20

4766 Statistics 1

Section A

		1
(With $\sum fx = 7500$ and $\sum f = 10000$ then arriving at the		
mean)		
(i) £0.75 scores (B1, B1)	B1 for numerical mean	
(ii) 75p scores (B1, B1)	(0.75 or 75 seen)	
(iii) 0.75p scores (B1, B0) (incorrect units)	B1dep for correct units	
(iv) £75 scores (B1, B0) (incorrect units)	attached	
<u>After B0, B0</u> then sight of $\frac{7500}{10000}$ scores SC1. SC1or an answer		
in the range $\pounds 0.74 - \pounds 0.76$ or $74p - 76p$ (both inclusive) scores		
SC1 (units essential to gain this mark)		
Standard Deviation: (CARE NEEDED here with close proximity	B2 correct s.d.	
of answers)	(B1) correct rmsd	
• 50.2(0) using divisor 9999 scores B2 (50.20148921)		
• 50.198 (= 50.2) using divisor 10000 scores B1(<i>rmsd</i>)	(B2) default	
• If divisor is <u>not</u> shown (or calc used) and only an answer	()	
of 50.2 (i.e. not coming from 50.198) is seen then award		
B2 on b.o.d. (default)		
<u>After B0 scored</u> then an attempt at S_{xx} as evident by either	$\sum fx^2 = 25,205,000$	
$S_{xx} = (5000 + 200000 + 25000000) - \frac{7500^2}{10000} (= 25199375)$	Beware $\sum x^2 = 25,010,100$	
or	After B0 scored then	
$S_{xx} = (5000 + 200000 + 25000000) - 10000(0.75)^2$	(M1) or M1f.t. for	
$S_{xx} = (5000 + 200000 + 2500000) = 10000(0.75)$	attempt at S_{xx}	
scores (M1) or M1ft 'their 7500 ² ' or 'their 0.75 ² '	NB full marks for correct	
NB The <u>structure</u> must be correct in both above cases with a max of 1 slip only after applying the f.t.	results from recommended method which is use of calculator functions	

(ii)	$P(\text{Two } \pounds 10 \text{ or two } \pounds 100) = \frac{50}{10000} \times \frac{49}{9999} + \frac{20}{10000} \times \frac{19}{9999} = 0.0000245 + 0.0000038 = (0.00002450245 + 0.00000380038) = 0.000028(3) \text{ o.e.} = (0.00002830283)$ $\frac{\text{After } \text{M0, } \text{M0}}{\text{ften } \frac{50}{10000}} \times \frac{50}{10000} + \frac{20}{10000} \times \frac{20}{10000} \text{ o.e.}$ Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9 × 10 ⁻⁵ o.e.) Similarly, $\frac{50}{10000} \times \frac{49}{10000} + \frac{20}{10000} \times \frac{19}{10000} \text{ scores SC1}$	M1 for either correct product seen (ignore any multipliers) M1 sum of both correct (ignore any multipliers) A1 CAO (as opposite with no rounding) (SC1 case #1) (SC1 case #2) <u>CARE</u> answer is also 2.83×10^{-5}	3
00		TOTAL	7
Q2 (i)	Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$ or P(all correct) = $\frac{1}{6!} = \frac{1}{720} = 0.00139$	M1 for 6! Or 720 (sioc) or product of fractions A1 CAO (accept 0.0014)	2
(ii)	Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$ or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ or P(picks T, O, M) = $\frac{1}{\binom{6}{3}} = \frac{1}{20}$	M1 for denominators M1 for numerators or 3! A1 CAO Or M1 for $\binom{6}{3}$ or 20 sioc M1 for $1/\binom{6}{3}$ A1 CAO	3
		TOTAL	5
Q3 (i)	<i>p</i> = 0.55	B1 cao	1
(ii)	$E(X) = 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ $E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ $= 0 + 0.1 + 0.2 + 0.45 + 4$ $= (4.75)$ $Var(X) = 'their' 4.75 - 1.35^{2} = 2.9275 \text{ awfw} (2.9275 - 2.93)$	M1 for Σrp (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors) M1 for $\Sigma r^2 p$ (at least 3 non zero terms correct) M1dep for – their E(X) ² provided Var(X) > 0 A1 cao (no 'n' or 'n-1' divisors)	
		divisors)	5
(iii)	P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.	M1 for $(0.05+0.05+0.25)^2$ or 0.35^2 seen A1cao: awfw (0.1225 - 0.123) or 49/400	2

TOTAL 8			
		TOTAL	8

Q4	$X \sim B(50, 0.03)$		
(i)	(A) $P(X = 1) = {\binom{50}{1}} \times 0.03 \times 0.97^{49} = 0.3372$	M1 0.03×0.97^{49} or $0.0067(4)$	
	$(B) P(X = 0) = 0.97^{50} = 0.2181$	M1 $\binom{50}{1} \times pq^{49}$ (p+q =1) A1 CAO (awfw 0. 337 to 0. 3372) or 0.34(2s.f.) or 0.34(2d.p.) but not just 0.34	3
	P(X > 1) = 1 - 0.2181 - 0.3372 = 0.4447	B1 for 0.97^{50} or 0.2181 (awfw 0.218 to 0.2181) M1 for 1 - ('their' p (X = 0) + 'their' p(X = 1)) must have both probabilities A1 CAO (awfw 0.4447 to 0.445)	3
(ii)	Expected number = $np = 240 \times 0.3372 = 80.88 - 80.93 = (81)$ Condone 240 × 0.34 = 81.6 = (82) but for M1 A1f.t.	M1 for $240 \times \text{prob}(A)$ A1FT	2
	Controlle 210 Actes and (62) out jor intrigin	TOTAL	8
Q5 (i)	P(R) × P(L) = $0.36 \times 0.25 = 0.09 \neq P(R \cap L)$ Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09 $\neq 0.2$ or $\neq p(R \cap L)$ so not independent)	M1 for 0.36×0.25 or 0.09 seen A1 (numerical justification needed)	2
(ii) (iii)	$P(L \mid R) = \frac{P(L \cap R)}{P(R)} = \frac{0.2}{0.36} = \frac{5}{9} = 0.556 \text{ (awrt 0.56)}$	 G1 for two overlapping circles labelled G1 for 0.2 and either 0.16 or 0.05 in the correct places G1 for all 4 correct probs in the correct places (including the 0.59) The last two G marks are independent of the labels M1 for 0.2/0.36 o.e. A1 cao 	3
	This is the probability that Anna is late given that it is raining. (must be in context) Condone 'if ' or 'when' or 'on a rainy day' for 'given that' but <u>not</u> the words 'and' or 'because' or 'due to'	E1 (indep of M1A1) Order/structure <u>must</u> be correct i.e. no reverse statement	3
		TOTAL	8

Section B

		1	1
Q6	Median = $4.06 - 4.075$ (inclusive)	B1cao	
(i)			
	$Q_1 = 3.8$	B1 for Q_1 (cao)	
	$Q_3 = 4.3$	B1 for Q_3 (cao)	
	Inter quantile range $= 42, 28, = 0.5$	D1 ft for IOD must be	
	Inter-quartile range = $4.3 - 3.8 = 0.5$	B1 ft for IQR must be using t-values not	
		locations to earn this	4
		mark	
		lilai K	
(ii)	Lower limit ' their $3.8' - 1.5 \times$ 'their $0.5' = (3.05)$	B1ft: must have -1.5	
(11)	Upper limit ' their $4.3' + 1.5 \times$ 'their $0.5' = (5.05)$	B1ft: must have +1.5	
	Very few if any temperatures <u>below 3.05 (but not zero)</u>	E1ft dep on -1.5 and Q ₁	
	None above 5.05	E1ft dep on $+1.5$ and Q_3	
	'So few, if any outliers' scores SC1		
		Again, must be using t-	4
		values NOT locations to	4
		earn these 4 marks	
(iii)	Valid argument such as 'Probably not, because there is nothing		
	to suggest that they are not genuine data items; (they do not	E1	
	appear to form a separate pool of data.')		
	Accept: exclude outlier – 'measuring equipment was wrong' or		1
	'there was a power cut' or ref to hot / cold day		
	[Allow suitable valid alternative arguments]		
(iv)	Missing frequencies 25, 125, 50	B1, B1, B1 (all cao)	
			3
(v)	$Mean = (3.2 \times 25 + 3.6 \times 125 + 4.0 \times 243 + 4.4 \times 157 + 4.8 \times 50)/600$	M1 for at least 4	
		midpoints correct and	
	= 2432.8/600 = 4.05(47)	being used in attempt to	2
		find $\sum_{t} ft$	
		—	
		A1cao: awfw (4.05 –	
		4.055) ISW or rounding	
(vi)	New mean = $1.8 \times$ 'their $4.05(47)$ ' + $32 = 39.29(84)$ to 39.3	B1 FT	
	New $s = 1.8 \times 0.379$	M1 for 1.8×0.379	3
	= 0.682	A1 CAO awfw (0.68 –	
		0.6822)	
		TOTAL	17

Q7 (i)	$X \sim B(10, 0.8)$ (A) Either $P(X = 8) = {\binom{10}{8}} \times 0.8^8 \times 0.2^2 = 0.3020$ (awrt) or $P(X = 8) = P(X \le 8) - P(X \le 7)$ $= 0.6242 - 0.3222 = 0.3020$ (B) Either $P(X \ge 8) = 1 - P(X \le 7)$ = 1 - 0.3222 = 0.6778 or $P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$ = 0.3020 + 0.2684 + 0.1074 = 0.6778	M1 $0.8^8 \times 0.2^2$ or 0.00671 M1 $\binom{10}{8} \times p^8 q^2$; (p +q =1) Or 45 $\times p^8 q^2$; (p +q =1) A1 CAO (0.302) not 0.3 OR: M2 for 0.6242 – 0.3222 A1 CAO M1 for 1 – 0.3222 (s.o.i.) A1 CAO awfw 0.677 – 0.678 or M1 for sum of 'their' p(X=8) plus correct expressions for p(x=9) and p(X=10) A1 CAO awfw 0.677 – 0.678	3
(ii)	Let $X \sim B(18, p)$ Let p = probability of delivery (within 24 hours) (for population) H ₀ : $p = 0.8$ H ₁ : $p < 0.8$ P($X \le 12$) = 0.1329 > 5% ref: [pp =0.0816]	 B1 for definition of <i>p</i> B1 for H₀ B1 for H₁ M1 for probability 0.1329 M1dep strictly for comparison of 0.1329 with 5% (seen or clearly implied) 	
	So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that less than 80% of orders will be delivered within 24 hours Note: use of critical region method scores M1 for region {0,1,2,,9, 10} M1dep for 12 does not lie in critical region then A1dep E1dep as per scheme	A1dep on both M's E1dep on M1,M1,A1 for conclusion in context	7

Mark Scheme

(iii)	Let $X \sim B(18, 0.8)$ $H_1: p \neq 0.8$ LOWER TAIL $P(X \le 10) = 0.0163 < 2.5\%$ $P(X \le 11) = 0.0513 > 2.5\%$ $P(X \ge 11) = 0.0513 > 2.5\%$ $P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9009 = 0.0991 > 2.5\%$ $P(X \ge 18) = 1 - P(X \le 17) = 1 - 0.9820 = 0.0180 < 2.5\%$ So critical region is {0,1,2,3,4,5,6,7,8,9,10,18} o.e. Condone $X \le 10$ and $X \ge 18$ or $X = 18$ but not p($X \le 10$) and $p(X \ge 18)$ Correct CR without supportive working scores SC2 max after the 1 st B1 (SC1 for each fully correct tail of CR)	 B1 for H₁ B1 for 0.0163 or 0.0513 seen M1dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied) A1dep for correct lower tail CR (must have zero) B1 for 0.0991 or 0.0180 seen M1dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied) A1dep for correct upper tail CR 	7
		TOTAL	19

4766 Statistics 1

Q1	Median = 2	P4 C4 O	2
(i)	Mode = 1	B1 CAO B1 CAO	2
(ii)	60 60 60 60 60 60 60 60 60 60	S1 labelled linear scales on both axes H1 heights	2
(iii)	Positive	B1	1
		TOTAL	5
Q2 (i)	$\binom{25}{5}$ different teams = 53130	M1 for $\begin{pmatrix} 25\\5 \end{pmatrix}$ A1 CAO	2
(ii)	$\binom{14}{3} \times \binom{11}{2} = 364 \times 55 = 20020$	M1 for either combination M1 for product of both A1 CAO	3
		TOTAL	5
Q3 (i)	Mean $=\frac{126}{12} = 10.5$	B1 for mean	
	Sxx = $1582 - \frac{126^2}{12} = 259$ s = $\sqrt{\frac{259}{11}} = 4.85$	M1 for attempt at Sxx A1 CAO	3
(ii)	New mean = 500 + 100 ×10.5 = 1550	B1 ANSWER GIVEN	
	New s = $100 \times 4.85 = 485$	M1A1FT	3
(iii)	On average Marlene sells more cars than Dwayne. Marlene has less variation in monthly sales than Dwayne.	E1 E1FT	2
		TOTAL	8

Q4			
(i)	E(X) = 25 because the distribution is symmetrical.	E1 ANSWER GIVEN	1
(ii)	Allow correct calculation of Σrp E(X ²) = 10 ² ×0.2+20 ² ×0.3+30 ² ×0.3+40 ² ×0.2 = 730 Var(X) = 730 - 25 ² = 105	M1 for $\Sigma r^2 p$ (at least 3 terms correct) M1dep for – 25 ² A1 CAO	3
		TOTAL	4
Q5 (i)	Distance freq width f dens 0- 360 50 7.200 50- 400 50 8.000 100- 307 100 3.070 200-400 133 200 0.665	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 50 miles. L1 linear scales on both axes and label W1 width of bars H1 height of bars	5
(ii)	Median = 600th distance	B1 for 600 th	
	Estimate = $50 + \frac{240}{400} \times 50 = 50 + 30 = 80$	M1 for attempt to interpolate A1 CAO	3
		TOTAL	8
Q6 (i)	(A) P(at most one) = $\frac{83}{100} = 0.83$	B1 aef M1 for (10+2+1)/100	1 2
	(B) P(exactly two) = $\frac{10+2+1}{100} = \frac{13}{100} = 0.13$	A1 aef	2
(ii)	P(all at least one) = $\frac{53}{100} \times \frac{52}{99} \times \frac{51}{98} = \frac{140556}{970200} = 0.145$	M1 for $\frac{53}{100}$ × M1 <i>dep</i> for product of next 2 correct fractions A1 CAO	3
		TOTAL	

Mark Scheme

June 2009

PMT

Q7			
(i)	<i>a</i> = 0.8, <i>b</i> = 0.85, <i>c</i> = 0.9.	B1 for any one B1 for the other two	2
(ii)	P(Not delayed) = $0.8 \times 0.85 \times 0.9 = 0.612$	M1 for product A1 CAO	
	P(Delayed) = 1 - 0.8 × 0.85 × 0.9 = 1 - 0.612 = 0.388	M1 for 1 – P(delayed) A1FT	4
(iii)	P(just one problem)	D4	
	= 0.2×0.85×0.9 + 0.8×0.15×0.9 + 0.8×0.85×0.1	B1 one product correct M1 three products	
	= 0.153 + 0.108 + 0.068 = 0.329	M1 sum of 3 products A1 CAO	4
(iv)	P(Just one problem delay)	M1 for numerator	
	$= \frac{P(\text{Just one problem and delay})}{P(\text{Delay})} = \frac{0.329}{0.388} = 0.848$	M1 for denominator A1FT	3
(v)	P(Delayed No technical problems)	M1 for 0.15 +	
	<i>Either</i> = $0.15 + 0.85 \times 0.1 = 0.235$	M1 for second term A1CAO	
	$Or = 1 - 0.9 \times 0.85 = 1 - 0.765 = 0.235$	M1 for product M1 for 1 – product A1CAO	
	$Or = 0.15 \times 0.1 + 0.15 \times 0.9 + 0.85 \times 0.1 = 0.235$	M1 for all 3 products M1 for sum of all 3 products A1CAO	
	Or (using conditional probability formula)		3
	P(Delayed and no technical problems)		
	P(No technical problems)	M1 for numerator	
	$=\frac{0.8\times0.15\times0.1+0.8\times0.15\times0.9+0.8\times0.85\times0.1}{0.8}$	M1 for denominator	
	$=\frac{0.188}{0.8}=0.235$	A1CAO	
(vi)	Expected number = $110 \times 0.388 = 42.7$	M1 for product	2
		A1FT TOTAL	18

Mark Scheme

June 2009

Q8	X ~ B(15, 0.2)		
(i)	(A) $P(X = 3) = {\binom{15}{3}} \times 0.2^3 \times 0.8^{12} = 0.2501$	M1 $0.2^3 \times 0.8^{12}$ M1 $\binom{15}{3} \times p^3 q^{12}$	
		A1 CAO	3
	OR from tables $0.6482 - 0.3980 = 0.2502$	OR: M2 for 0.6482 – 0.3980 A1 CAO	
	$(B) P(X \ge 3) = 1 - 0.3980 = 0.6020$	M1 P(<i>X</i> ≤2) M1 1-P(X≤2)	3
		A1 CAO	2
	(C) $E(X) = np = 15 \times 0.2 = 3.0$	M1 for product A1 CAO	
(ii)	(A)Let p = probability of a randomly selected child eating at least 5 a day H_0 : $p = 0.2$ H_1 : $p > 0.2$ (B) H_1 has this form as the proportion who eat at least 5 a day is expected to increase.	B1 for definition of p in context B1 for H ₀ B1 for H ₁ E1	4
(iii)	Let $X \sim B(15, 0.2)$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.8358 = 0.1642 > 10\%$ $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.9389 = 0.0611 < 10\%$ So critical region is {6,7,8,9,10,11,12,13,14,15}	B1 for 0.1642 B1 for 0.0611 M1 for at least one comparison with 10% A1 CAO for critical region <i>dep</i> on M1 and at least one B1	6
	7 lies in the critical region, so we reject null hypothesis and we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased.	M1 <i>dep</i> for comparison A1 <i>dep</i> for decision and conclusion in context	
		TOTAL	18

4766 Statistics 1

1	(i)	5 2 6 3 4 7 8 7 1 2 2 3 4 5 5 7 9 8 1 Key 6 3 represents 63 mph	G1 stem G1 leaves CAO G1 sorted G1 key	[4]
	(ii)	Median = 72 Midrange = 66.5	B1 FT B1 CAO	[2]
	(iii)	<i>EITHER:</i> Median since midrange is affected by outlier (52) <i>OR:</i> Median since the lack of symmetry renders the midrange less representative	E1 for median E1 for explanation TOTAL	[2] [8]
2	(i)	(A) $P(X = 10) = P(5 \text{ then } 5) = 0.4 \times 0.25 = 0.1$	B1 ANSWER GIVEN	[1]
		(B) $P(X = 30) = P(10 \text{ and } 20) = 0.4 \times 0.25 + 0.2 \times 0.5 = 0.2$	M1 for full calculation A1 ANSWER GIVEN	[2]
	(ii)	$E(X) = 10 \times 0.1 + 15 \times 0.4 + 20 \times 0.1 + 25 \times 0.2 + 30 \times 0.2 = 20$ $E(X^{2}) = 100 \times 0.1 + 225 \times 0.4 + 400 \times 0.1 + 625 \times 0.2 + 900 \times 0.2 = 445$ $Var(X) = 445 - 20^{2} = 45$	M1 for Σ rp (at least 3 terms correct) A1 CAO M1 for Σ r ² p (at least 3 terms correct) M1 dep for – their E (X) ² A1 FT their E(X) provided Var(X)	[5]
			>0 TOTAL	[8]
3	(i)		 G1 for two labelled intersecting circles G1 for at least 2 correct probabilities G1 for remaining probabilities 	[3]
	(ii)	$P(G) \times P(R) = 0.24 \times 0.13 = 0.0312 \neq P(G \cap R) \text{ or } \neq 0.06$ So not independent.	M1 for 0.24 × 0.13 A1	[2]

PMT

			_	
	(iii)	$P(R \mid G) = \frac{P(R \cap G)}{P(G)} = \frac{0.06}{0.24} = \frac{1}{4} = 0.25$	M1 for numerator M1 for denominator A1 CAO	[3]
			TOTAL	[8]
4	(i)	P(20 correct) = $\binom{30}{20} \times 0.6^{20} \times 0.4^{10} = 0.1152$	M1 $0.6^{20} \times 0.4^{10}$ M1 $\binom{30}{20} \times p^{20} q^{10}$ A1 CAO	[3]
	(ii)	Expected number = $100 \times 0.1152 = 11.52$	M1 A1 FT (Must not round to whole number)	[2]
			TOTAL	[5]
5	(i)	$P(Guess correctly) = 0.1^4 = 0.0001$	B1 CAO	[1]
	(ii)	P(Guess correctly) = $\frac{1}{4!} = \frac{1}{24}$	M1 A1 CAO TOTAL	[2] [3]
6	(i)	$20 \times 19 \times 18 = 6840$	M1 A1	[2]
	(ii)	$20^3 - 20 = 7980$	M1 for figures – 20 A1	[2]
			TOTAL	[4]

7	(i)	$10 \times 2 = 20.$	M1 for 10 × 2 A1 CAO	[2]
	(ii)	Mean = $\frac{10 \times 65 + 35 \times 75 + 55 \times 85 + 20 \times 95}{120} = \frac{9850}{120} = 82.08$ It is an estimate because the data are grouped.	M1 for midpoints M1 for double pairs A1 CAO E1 indep	[4]
	(iii)	$10 \times 65^{2} + 35 \times 75^{2} + 55 \times 85^{2} + 20 \times 95^{2} (= 817000)$ $S_{xx} = 817000 - \frac{9850^{2}}{120} (= 8479.17)$ $s = \sqrt{\frac{8479.17}{119}} = 8.44$	M1 for $\Sigma f x^2$ M1 for valid attempt at S_{xx} A1 CAO	[3]
	(iv)	$\overline{x} - 2s = 82.08 - 2 \times 8.44 = 65.2$ $\overline{x} + 2s = 82.08 + 2 \times 8.44 = 98.96$ So there are probably some outliers.	M1 FT for $\overline{x} - 2s$ M1 FT for $\overline{x} + 2s$ A1 for both E1 dep on A1	[4]
	(v)	Negative.	E1	[1]
	(vi)	Upper bound 60 70 80 90 100 Cumulative frequency 0 10 45 100 120	C1 for cumulative frequencies S1 for scales L1 for labels 'Length and CF' P1 for points J1 for joining points dep on P1 All dep on attempt at cumulative frequency.	[5]
			TOTAL	[19]

			TOTAL	[17]
		H_1 has this form as she believes that the probability of a low pollution level is greater in this street.	E1 indep	
		Conclude that there is enough evidence to indicate that the probability of low pollution levels is higher on the new street.	E1 for conclusion in context	[5]
			A1 CAO dep on B1M1	
		15 lies in the critical region. So there is sufficient evidence to reject H_0	B1 for CR, M1 for comparison	
		<i>Or:</i> Critical region is {15,16,17,18,19,20}	probability of 0.0207 M1 for comparison <i>Or:</i>	
	(iii)	Let $X \sim B(20, 0.5)$ Either: $P(X \ge 15) = 1 - 0.9793 = 0.0207 < 5\%$	<i>Either:</i> B1 for correct	
			OR: M2 for 0.5443 – 0.1969 A1 CAO	[3]
		(B) Either P(1 day) = $\binom{10}{1} \times 0.15^{1} \times 0.85^{9} = 0.3474$ or from tables P(1 day) = P(X \le 1) - P(X \le 0) = 0.5443 - 0.1969 = 0.3474	M1 $0.15^1 \times 0.85^9$ M1 $\binom{10}{1} \times p^1 q^9$ A1 CAO	
		Or from tables $P(No \text{ days}) = 0.1969$		[2]
	(ii)	$X \sim B(10, 0.15)$ (A) P(No days) = 0.85 ¹⁰ = 0.1969 Or from tables P(No days) = 0.1069	M1 A1	[9]
		(C) P(One low, one medium, one high) = $6 \times 0.5 \times 0.35 \times 0.15 = 0.1575$	M1 for product of probabilities $0.5 \times 0.35 \times 0.15$ or $^{21}/_{800}$ M1 × 6 or × 3! or $^{3}P_{3}$ A1 CAO	[3]
		(<i>B</i>) P(Low on at least 1 day) = $1 - 0.5^3 = 1 - 0.125 = 0.875$	M1 for 1 – 0.5 ³ A1 CAO	[2]
8	(i)	(A) P(Low on all 3 days) = $0.5^3 = 0.125$ or $\frac{1}{8}$	M1 for 0.5 ³ A1 CAO	[2]

GCE

Mathematics (MEI)

Advanced Subsidiary GCE 4766

Statistics 1

Mark Scheme for June 2010

Q1 (i)	Positive skewness				B1	1
(ii)	Inter-quartile rang	ge = 10.3 - 8	.0 = 2.3		B1	-
	Lower limit 8.0 – Upper limit 10.3	$+ 1.5 \times 2.3 =$	13.75		M1 for $8.0 - 1.5 \times 2.3$ M1 for $10.3 + 1.5 \times 2.3$	5
	Lowest value is 7 Highest value is 1			upper end	A1 A1	
(iií)	Any suitable answ			upper end.		
	Eg minimum wag		ery low values		E1 one comment relating to low earners	
	Highest wage earner may be a supervisor or manager or specialist worker or more highly trained worker				E1 one comment relating to high earners	2
					TOTAL	8
Q2	4k + 6k + 6k + 4k	= 1			M1	
(i)	20k = 1 $k = 0.05$				A1 NB Answer given	2
(ii)	$E(X) = 1 \times 0.2 + 2x$ (or by inspection)	×0.3+3×0.3-	$+4 \times 0.2 = 2.5$		M1 for Σrp (at least 3 terms correct) A1 CAO	
	$E(X^2) = 1 \times 0.2 + 4$ Var(X) = 7.3 - 2		$+16 \times 0.2 = 7.3$	3	M1 for $\Sigma r^2 p$ (at least 3 terms correct) M1dep for – their E(X) ² A1 FT their E(X)	5
					provided Var(X) > 0	
					TOTAL	7
Q3 (i)	Lifetime (x hours)	Frequency	Width	FD	M1 for fds A1 CAO	
	$0 < x \le 20$	24	20	1.2	In Cho	
	$20 < x \le 30$	13	10	1.3	Accept any suitable unit	
	$30 < x \le 50$	14	20	0.7	for fd such as eg freq	
	$50 < x \le 65$	21	15	1.4	per 10 hours.	
	$65 < x \le 100$	18	35	0.51		
	14 13 1 0.8 0.6				L1 linear scales on both axes and label on vert axis	5
	0.4 0.2 TO 29 30	48 50 6	6 70 MD B	C. Marker 10	W1 width of bars H1 height of bars	

June 2010

(**)	M_{1} M_{1} M_{1} M_{1} M_{1} M_{1} M_{2} M_{1} M_{2} M_{1} M_{2} M_{1} M_{2} M_{1} M_{2} M_{2} M_{1} M_{2} M_{2} M_{1} M_{2} M_{2	D1 CAO	
(ii)	Median lies in third class interval $(30 < x \le 50)$	B1 CAO	
	Median = 45.5th lifetime (which lies beyond 37 but not as far as 51)	E1 <i>dep</i> on B1	2
		TOTAL	7
Q4 (i)	$1 \times \frac{1}{5} = \frac{1}{5}$	M1 A1	2
(ii)	$1 \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5} = \frac{24}{625} = 0.0384$	M1 For $1 \times \frac{4}{5} \times or just \frac{4}{5} \times$ M1 <i>dep</i> for fully correct product A1	3
(iii)	1 - 0.0384 = 0.9616 or $601/625$	B1	1
		TOTAL	6
Q5 (i)	Mean = $\frac{0 \times 37 + 1 \times 23 + 2 \times 11 + 3 \times 3 + 4 \times 0 + 5 \times 1}{75} = \frac{59}{75} = 0.787$ $S_{xx} = \frac{59^2}{75} = 0.787$	M1 A1 M1 for Σfx ² s.o.i.	
	$0^{2} \times 37 + 1^{2} \times 23 + 2^{2} \times 11 + 3^{2} \times 3 + 4^{2} \times 0 + 5^{2} \times 1 - \frac{59^{2}}{75} = 72.59$ $s = \sqrt{\frac{72.59}{74}} = 0.99$	M1 <i>dep</i> for good attempt at S_{xx} BUT NOTE M1M0 if their $S_{xx} < 0$ A1 CAO	5
(ii)	New mean = $0.787 \times \pounds 1.04 = \pounds 0.818$ or 81.8 pence	B1 ft their mean	
	New s = $0.99 \times \pounds 1.04 = \pounds 1.03$ or 103 pence	B1 ft their s	3
		B1 for correct units <i>dep</i> on at least 1 correct (ft)	
		TOTAL	8
	Section B		
Q6	X ~ B(18, 0.1)		
(i)	(A) P(2 faulty tiles) = $\binom{18}{2} \times 0.1^2 \times 0.9^{16} = 0.2835$	M1 $0.1^2 \times 0.9^{16}$ M1 $\binom{18}{2} \times p^2 q^{16}$ A1 CAO	
	OR from tables $0.7338 - 0.4503 = 0.2835$	OR: M2 for 0.7338 – 0.4503 A1 CAO	3
	(B) P(More than 2 faulty tiles) $= 1 - 0.7338 = 0.2662$	M1 P(<i>X</i> ≤2) M1 <i>dep</i> for 1-P(X≤2) A1 CAO	3

June 2010

	(<i>C</i>) $E(X) = np = 18 \times 0.1 = 1.8$	M1 for product 18×0.1 A1 CAO	2
(ii)	 (A) Let p = probability that a randomly selected tile is faulty H₀: p = 0.1 H₁: p > 0.1 (B) H₁ has this form as the manufacturer believes that the number of faulty tiles may <u>increase</u>. 	 B1 for definition of <i>p</i> in context B1 for H₀ B1 for H₁ E1 	3
(iii)	Let $X \sim B(18, 0.1)$ $P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9018 = 0.0982 > 5\%$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.9718 = 0.0282 < 5\%$ So critical region is {5,6,7,8,9,10,11,12,13,14,15,16,17,18}	B1 for 0.0982 B1 for 0.0282 M1 for at least one comparison with 5% A1 CAO for critical region <i>dep</i> on M1 and at least one B1	4
(iv)	4 does not lie in the critical region, (so there is insufficient evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that the number of faulty tiles has increased.	M1 for comparison A1 for conclusion in context TOTAL	2
Q7 (i)	100 100 0.95 0.05 $0.$	G1 first set of branches G1 <i>indep</i> second set of branches G1 <i>indep</i> third set of branches G1 labels	4

June 2010

(ii)	(A) P(all on time) = $0.95^3 = 0.8574$	M1 for 0.95 ³ A1 CAO	2
	(B) P(just one on time) = $0.95 \times 0.05 \times 0.4 + 0.05 \times 0.6 \times 0.05 + 0.05 \times 0.4 \times 0.6$ = 0.019 + 0.0015 + 0.012 = 0.0325	M1 first term M1 second term M1 third term A1 CAO	4
	(<i>C</i>) P(1200 is on time) = 0.95×0.95×0.95 +0.95×0.05×0.6 + 0.05×0.6×0.95 + 0.05×0.4×0. 6 = 0.857375+0.0285+0.0285+0.012= 0.926375	M1 any two terms M1 third term M1 fourth term A1 CAO	4
(iii)	P(1000 on time given 1200 on time) = P(1000 on time and 1200 on time) / P(1200 on time) = $\frac{0.95 \times 0.95 \times 0.95 + 0.95 \times 0.05 \times 0.6}{0.926375} = \frac{0.885875}{0.926375} = 0.9563$	M1 either term of numerator M1 full numerator M1 denominator A1 CAO	4
		Total	18

Mathematics (MEI)

Advanced Subsidiary GCE

Unit 4766: Statistics 1

Mark Scheme for January 2011

	SECTION A			
Q1 (i)	Mode = 960 (grams) Median = 1020 (grams) N.B. 96 and 102 gets SC1	B1 CAO B1 CAO	2	Ignore units and working
(ii)	Positive	E1	1	Not right skewed Not positive correlation
		TOTAI	_ 3	
Q2 (i)	P(product of two scores < 10) = $\frac{13}{16} = 0.8125$	B1	1	Allow 0.813 or 0.812
(ii)	P(even) × P(< 10) = $0.5 \times \frac{13}{16} = \frac{13}{32} = 0.40625$ P(even ∩ < 10) = $\frac{6}{16} = 0.375$ So not independent.	M1 for $0.5 \times \frac{13}{16}$ or $\frac{13}{32}$ FT their answer to (i) M1 for $\frac{6}{16}$ A1	3	Do not allow these embedded in probability formulae Also allow P(even <10) = $6/13 \neq P(even) = 1/2$ Or P(<10 even) = $6/8 \neq P(<10) = 13/16$ Or P(even <10) = $6/13 \neq P(even <10^{\circ}) = 2/3$ Or P(<10 even) = $6/8 \neq P(<10 even^{\circ}) = 7/8$ For all of these alternatives allow M2 for both probabilities. (M1 not available except if they correctly state both probabilities EG P(even <10) and P(even) and get one correct) If they do not state what probabilities they are finding, give M2 for one of the above pairs of probabilities with \neq symbol
		TOTAI	4	

Q3 (i)	$\begin{pmatrix} 13\\3 \end{pmatrix}$ ways of choosing the men = 286	M1 for $\begin{pmatrix} 13\\ 3 \end{pmatrix}$ seen A1	2	Accept ${}^{13}C_3$ or ${}^{13!}/_{(3!10!)}$ or equivalent for M1 No marks for permutations
(ii)	$\binom{13}{3} \times \binom{10}{3} = 286 \times 120 = 34320$	M1 for product A1 FT their 286	2	For permutations $1716 \times 720 = 1235520$ allow SC1 406 (from 286 + 120) scores SC1 (without further working)
(iii)	$\binom{23}{6} = 100947$ 34320/100947 = 1040/3059 = 0.340 (allow 0.34)	M1 for denominator of $ \begin{pmatrix} 23 \\ 6 \end{pmatrix} $ A1 FT	2	FT their 34320 Or ${}^{6}C_{3} \times 13/23 \times 12/22 \times 11/21 \times 10/20 \times 9/19 \times 8/18 =$ 0.340 scores M1 for product of fractions and A1 for ${}^{6}C_{3} \times$ and correct evaluation For permutations 1235520/72681840=0.017 scores SC1 Allow full marks for fractional answers, even if unsimplified 406/100947 = 0.00402 gets M1A1 with or without working
		TOTAL	6	

Q4 (i)	$2k + 6k + 12k + 20k + 30k = 1, \ 70k = 1$ $k = \frac{1}{70}$	M1 A1 NB ANSWER GIVEN	2	For five multiples of k (at least four correct multiples) Do not need to sum or =1 for M1 Condone omission of either $70k = 1$ or $k = 1/70$ but not both Condone omission of k : $2+6+12+20+30=70$ Allow substitution of $k = 1/70$ into formula and getting at least four of $2/70$, $6/70$, $12/70$, $20/70$, $30/70$ for M1 and $2/70+6/70+12/70+20/70+30/70 = 1$ for A1
(ii)	$E(X) = 1 \times \frac{2}{70} + 2 \times \frac{6}{70} + 3 \times \frac{12}{70} + 4 \times \frac{20}{70} + 5 \times \frac{30}{70} = 4$ $E(X^{2}) = 1 \times \frac{2}{70} + 4 \times \frac{6}{70} + 9 \times \frac{12}{70} + 16 \times \frac{20}{70} + 25 \times \frac{30}{70} = \frac{1204}{70} = 17.2$ $Var(X) = 17.2 - 4^{2} = 1.2$	M1 for Σrp (at least 3 terms correct) A1 CAO M1 for $\Sigma r^2 p$ (at least 3 terms correct) M1dep for - their E(X) ² A1 FT their E(X) but not an error in E(X ²) provided Var(X) > 0	5	280/70 scores M1A0 USE of $E(X-\mu)^2$ gets M1 for attempt at $(x-\mu)^2$ should see $(-3)^2$, $(-2)^2$, $(-1)^2$, 0^2 , 1^2 (if $E(X)$ correct but FT their $E(X)$) (all 5 correct for M1), then M1 for $\Sigma p(x-\mu)^2$ (at least 3 terms correct with their probabilities) Allow all M marks with their probabilities, (unless not between 0 and 1, see below for all probs 1/70). Division by 5 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $E(X)$ also divided by 5. Unsupported correct answers get 5 marks. SC2 for use of 1/70 for all probabilities leading to E(X) = 3/14 and Var(X) = 145/196 = 0.74
		TOTAL	7	

Q5 (i)	P(Wet and bus) = 0.4×0.7 = 0.28	M1 for multiplying probabilities A1 CAO	2	Fractional answer = 7/25 (Allow 28/100)
(ii)	P(Walk or bike) = $0.6 \times 0.5 + 0.6 \times 0.4 + 0.4 \times 0.2 + 0.4 \times 0.1$ or 0.3+0.24+0.08+0.04 = 0.66	M1 for any two correct pairs M1 for sum of all four correct terms With no extra terms for second M1 A1 CAO	3	Or = $0.6 \times 0.9 + 0.4 \times 0.3$ gets M1 for either term = $0.54 + 0.12$ gets M1 for sum of both A1 CAO Or = $1 - 0.6 \times 0.1 - 0.4 \times 0.7 = 0.66$. M1 for $1 - $ one correct term, M1 for complete correct expression and A1 for correct evaluation.
(iii)	P(Dry given walk or bike) = $\frac{P(Dry \text{ and walk or bike})}{P(Walk \text{ or bike})}$ $= \frac{0.6 \times 0.9}{0.66} = \frac{0.54}{0.66} = \frac{9}{11} = 0.818$	M1 for numerator leading to 0.54 M1 for denominator Ft their P(Walk or bike) from (ii) provided between 0 and 1 A1 FT	3	Allow 0.82, not 0.819 More accurate answer =0.81818 Fractional answer = $54/66 = 27/33 = 9/11$ Condone answer of 0.8181 Do not give final A1 if ans ≥ 1
		TOTAL	8	

4766		Mark Scheme			
Q6 (i)	(A) P(Avoided air travel) $=\frac{7}{100} = 0.07$ (B) P(At least two) $=\frac{11+2+1+4}{100} = \frac{18}{100} = \frac{9}{50} = 0.18$	B1 aef isw M1 for (11+2+1+4)/100 A1 aef isw	1 2	For M1 terms must be added must be as above or better with no extra terms (added or subtracted) for M1 Must simplify to $18/100$ or $9/50$ or 0.18 for A1 SC1 for $18/58$ Or $1 - (14+26+0+42)/100 = 0.18$ gets M1A1	
(ii)	P(Reduced car use Avoided air travel) $=\frac{6}{7} = 0.857$	M1 for denominator 7 or 7/100 or 0.07 FT their (i)A A1 CAO	2	Allow 0.86	
(iii)	P(None have avoided air travel) = $\frac{93}{100} \times \frac{92}{99} \times \frac{91}{98} = 0.8025$	M1 for 93/100× (triple product) M1 for product of remaining fractions A1	3	Fuller answer 0.802511, so allow 0.803 without working, but 0.80 or 0.8 only with working . $(93/100)^3$ scores M1M0A0 which gives answer 0.804357 so watch for this. M0M0A0 for binomial probability including 0.93^{100} but ${}^3C_0 \times 0.07^0 \times 0.93^3$ still scores M1 $(k/100)^3$ for values of k other than 93 scores M0M0A0 $\frac{k}{100} \times \frac{(k-1)}{99} \times \frac{(k-2)}{98}$ for values of k other than 93 scores M1M0A0 Correct working but then multiplied or divided by some factor scores M1M0A0 ${}^{93}P_3 / {}^{100}P_3 = 0.803 {}^{93}P_3$ seen M1 divided by ${}^{100}P_3$ M1 0.803 A1 ${}^{93}C_3 / {}^{100}C_3 = 0.803$ Allow unsimplified fractional answer 778596/970200 =9269/11550	
		TOTAL	8		

	SECTION	B						
Q7 (i)	SECTIONIncome $0 \le x \le 20$ $20 < x \le 40$ $40 < x \le 60$ $60 < x \le 100$ $100 < x \le 200$	Frequency 238 365 142 128 45	M0, A0, I	width,	bicome 1 201	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per £1000. L1 linear scale and label on vertical axis W1 linear scale on horizontal axis and correct width of bars H1 height of bars	5	At least 4 fds correct for M1M1 can be also be gained from freq per 10K - 119,182.5, 71, 32, 4.5 (at least 4 correct) and A1 for allcorrectAccept any suitable unit for fd, eg freq per £10K, BUTNOT FD per £1000Allow fds correct to at least one dpIf fd not explicitly given, M1 A1 can be gained fromall heights correct (within one square) on histogram(and M1A0 if at least 4 correct)Allow restart although given fd wrongFor L1, label required on vert axis in relation to firstM1 mark ie fd or frequency density or if relevantfreq/£10K, freq/£k etc (NOT fd/£10K)Accept f/w or f/cw (freq/width or freq/class width)Ignore horizontal labelL1 can also be gained from an accurate key – may see1 square = 36.5 or 23.8 or 14.2For W1, must be drawn at 0, 20, 40 etc NOT 19.5 or20,5 etc NO GAPS ALLOWEDMust have linear scale.No inequality labels on their own such as 0≤I<20,

4766		Mark Scheme		January 2011
(ii)	$Mean = \frac{10 \times 238 + 30 \times 365 + 50 \times 142 + 80 \times 128 + 150 \times 45}{918}$ $= \frac{37420}{918} = 40.8$	M1 for midpoints M1 for midpoints ×frequencies with divisor 918 A1 CAO	3	At least three midpoints correct for M1 (seen in (ii) or in table in (i)) No marks if not using midpoints Second M1 for sight of at least 3 double pairs seen out of $10 \times 238 + 30 \times 365 + 50 \times 142 + 80 \times 128 + 150 \times$ 45 with divisor 918 Numerator = $2380+10950+7100+10240+6750$ Use of LCB or UCB for midpoints here scores 0 For answer 40.76 or 40.8 or 41 mark as B3 37420/918 o.e. scores M1M1A0 NB Accept answers seen without working in part (ii) or (iii) (from calculator) Use of 'not quite right' midpoints such as 10.5, 30.5, etc can get M0M1A0 here and SC3 in (iii) Watch for incorrect method 238/10+365/30+142/50+128/80+45/150=40.71 Allow max 4 sf in final answer Also accept £40760, £40800 etc
(iii)	$\sum fx^2 = 238 \times 10^2 + 365 \times 30^2 + 142 \times 50^2 + 128 \times 80^2 + 45 \times 150^2$ = 2539000 Or 238 × 100 + 365 × 900 + 142 × 2500 + 128 × 6400 + 45 × 22500 = 2539000 Or 2380 × 10 + 10950 × 300 + 7100 × 50 + 10240 × 80 + 13500 × 150 = 2539000 $S_{xx} = 2539000 - \frac{37420^2}{918} = 1013666$ $s = \sqrt{\frac{1013666}{917}} = 33.2$	M1 for at least 3 multiples fx^2 A1 for Σfx^2 M1 for attempt at S_{xx} Dep on first M1 BUT NOTE M1M0 if their $S_{xx} < 0$ A1 CAO If using LCB or UCB	4	For A1, all midpoints and frequencies correct Or Sxx = 2539000 – 918 × 40.76 ² = 1013855, s=33.25. Using mean 40.8 leads to 1010861, s= 33.20, Using mean = 41 leads to Sxx = 995844 and s = 32.95 M1M1 for $\sum f(x-xbar)^2$ M1 for first three terms, M1 for all 5 terms 238 × (10-40.76) ² + 365 × (30-40.76) ² + 142 × (50- 40.76) ² + 128 × (80-40.76) ² + 45 × (150-40.76) ² (= 1013666) A1 for S _{xx} = 1013666 A1 for final answer

4766	Mark Scheme		January 2011
	consistently then allow SC2 if working is fully correct but SC0 otherwise but no marks in part (ii)		For answer 33.25 or 33.3 or 33.2 (www) can just mark as B4 - these may be from calculator without working Allow 33 with correct working rmsd = $\sqrt{(1013666/918)}$ (=33.23) gets M1A1M1A0 (if seen) WATCH FOR DIVISOR OF 918 Allow max 4 sf in final answer Allow £33200 etc
(iv) $(\overline{x} - 2s = 40.76 - 2 \times 33.25 = -25.74)$ $\overline{x} + 2s = 40.76 + 2 \times 33.25 = 107.26$ Comment that there are almost certainly some outliers. Appropriate comment such as 'No, since there is nothing to indicate that these high earners represent a separate population.'	M1 for $\overline{x} + 2s$ or $\overline{x} - 2s$ A1 for 107.26 (FT) E1 E1 Dep on upper limit in range 106 - 108	4	FT any positive mean and positive sd for M1 Only follow through numerical values, not variables such as <i>s</i> , so if a candidate does not find <i>s</i> but then writes here 'limit is $40.76+2 \times$ standard deviation', do NOT award M1 (This rule of not following through variables applies in all situations) Award E0E0 if their upper limit > 200 Allow 'Must be some outliers' Allow any comments that implies that there are outliers
(v) New mean = $1.15 \times 40.76 = 46.87$ New variance = $1.15^2 \times 33.25^2 = 1462$ For misread 1.5 in place of 1.15 For $1.5 \times 40.76 = 61.1$ and $1.5^2 \times 33.25^2 = 2490$ allow SC2 if all present but SC0 otherwise	B1 FT M1A1 FT	3	No marks in (iv) unless using $\overline{x} + 2s$ or $\overline{x} - 2s$ FT their mean (if given to ≥ 2 s.f.) FT their s (if given to ≥ 2 s.f.) provided their s>0 If RMSD found in part (i) rather than s, then FT their RMSD For new SD = 38.24 found instead of variance give M1A0 even if called variance (and FT their <i>s</i>) M0A0 for 1.15 x 33.25 ² = 1271 Allow max 4 sf in final answers Min 2 sf If candidate 'starts again' only award marks for CAO
	TOTAL	19	

4766	6	Mark Scheme		January 2011
Q8 (i)	$E(X) = np = 12 \times 0.2 = 2.4$ Do not allow subsequent rounding.	M1 for product A1 CAO	2	If wrong <i>n</i> used consistently throughout, allow M marks only. NB If they round to 2, even if they have obtained 2.4 first they get M1A0. For answer of '2.4 or 2 if rounded up' allow M1A0 Answer of 2 without working gets M0A0. If they attempt $E(X)$ by summing products <i>xp</i> give no marks unless answer is fully correct.
(ii)	X ~ B(12, 0.2) (A) P(Wins exactly 2) = $\binom{12}{2} \times 0.2^2 \times 0.8^{10} = 0.2835$ OR from tables 0.5583-0.2749 = 0.2834	M1 $0.2^2 \times 0.8^{10}$ M1 $\binom{12}{2} \times p^2 q^{10}$ A1 CAO OR: M2 for 0.5583 – 0.2749 A1 CAO	3	With $p + q = 1$ Also for 66×0.004295 Allow answers within the range 0.283 to 0.284 with or without working or 0.28 to 0.283 if working shown See tables at the website http://www.mei.org.uk/files/pdf/formula_book_mf2.pd f
	(B) P(Wins at least 2) = 1-0.2749 = 0.7251	M1 P(<i>X</i> ≤1) M1 1-P(<i>X</i> ≤1) A1 CAO	3	M1 0.2749 seen M1 1 – 0.2749 seen Allow 0.725 to 0.73 but not 0.72. Point probability method: P(1) = $12 \times 0.2 \times 0.8^{11} = 0.2062$, P(0) = $0.8^{12} = 0.0687$ So P(X ≤ 1) = 0.2749 gets M1 then mark as per scheme SC1 for 1 – P(X ≤ 2) = 1 – 0.5583 = 0.4417 For misread of tables value of 0.2749, allow 0 in (<i>A</i>) but MAX M1M1 in (<i>B</i>) For P(X>1) = P(X=2) + P(X=3) + P(X=4) + allow M1 for 0.2835+0.2362+0.1329+0.0532+0.0155 and second M1 for 0.0033+0.0005+0.0001 and A1 for 0.725 or better M0M0A0 for 1 - P(X=1) = 1 – 0.2062 = 0.7938

4766	Mark Scheme		January 2011
(iii) Let $p = \text{probability that Ali wins a game}$ $H_0: p = 0.2$ $H_1: p > 0.2$ H_1 has this form as Ali claims that he is better at winning games than Mark is. <i>EITHER Probability method:</i> $P(X \ge 7) = 1 - P(X \le 6)$ = 1 - 0.9133 = 0.0867 > 5% So not significant, so there is not enough evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that Ali is better at winning games than Mark. Must include 'not enough evidence' or something similar for E1. 'Not enough evidence' can be seen in the either for the A mark or the E mark. Do not allow final conclusions for E1 such as : 'there is evidence to suggest that Ali is no better at winning games than Mark' or 'Mark and Ali have equal probabilities of winning games'	B1 for definition of <i>p</i> in context B1 for H ₀ B1 for H ₁ E1 B1 for P($X \ge 7$) B1 for 0.0867 Or 1 – 0.9133 seen M1 for comparison with 5% dep on B1 for 0.0867 A1 for not significant or 'accept H ₀ ' or 'cannot reject H ₀ ' or 'reject H ₁ ' E1 dep on M1A1 Do not award first B1 for poor symbolic notation such as P($X =$ 7) = 0.0867 This comment applies to all methods	4	Minimum needed for B1 is $p =$ probability that Ali wins. Allow $p = P(Ali wins)$ for B1 Definition of p must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H ₀ as long as it is a clear definition ' $p =$ the probability that Ali wins a game, NOT just a sentence 'probability is 0.2' H ₀ : p(Ali wins) = 0.2, H ₁ : p(Ali wins) > 0.2 gets B0B1B1Allow p=20%, allow θ or π and ρ but not x . However allow any single symbol <u>if defined</u> Allow H ₀ = $p=0.2$, Allow H ₀ : $p=^{2/10}$ Do not allow H ₀ : P(X=x) = 0.2, H ₁ : P(X=x) > 0.2 Do not allow H ₀ := 0.2, =20%, P(0.2), p(0.2), p(x)=0.2, x=0.2 (unless x correctly defined as a probability) Do not allow H ₁ : $p\geq0.2$, Do not allow H ₁ and H ₁ reversed for B marks but can still get E1 Allow NH and AH in place of H ₀ and H ₁ For hypotheses given in words allow Maximum B0B1B1E1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.2 oe. Zero for use of point prob - P(X = 7) = 0.0546

PMT

Mark	Scheme
------	--------

January 2011

<i>OR Critical region method:</i> Let $X \sim B(20, 0.2)$ $P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9133 = 0.0867 > 5\%$ $P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.9679 = 0.0321 < 5\%$ So critical region is {8,9,10,11,12,13,14,15,16,17,18,19,20}	B1 for 0.0867 B1 for 0.0321 M1 for at least one comparison with 5% A1 CAO for critical region and not significant or 'accept		Allow any form of statement of CR eg $X \ge 8$, 8 to 20, 8 or above, $X > 8$, {8,}, annotated number line, etc but not P($X \ge 8$) {8,9,10,11,12} gets max B2M1A0 – tables stop at 8. NB USE OF POINT PROBABILITIES gets B0B0M0A0 Use of complementary probabilities
7 does not lie in the critical region, so not significant, So there is not enough evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that Ali is better at winning games than Mark.	H_0 ' or 'cannot reject H_0 ' or 'reject H_1 ' <i>dep</i> on M1 and at least one B1 E1 dep on M1A1		Providing there is sight of 95%, allow B1 for 0.9133, B1 for 0.9679, M1 for comparison with 95% A1CAO for correct CR See additional notes below the scheme for other possibilities PLEASE CHECK THAT THERE IS NO EXTRA WORKING ON THE SECOND PAGE IN THE ANSWER BOOKLET
	TOTAL	17	

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified (see instruction 8), deduct the final answer mark in every case, except where there are more than two overspecified answers in a single question (only likely in question 7) in which case deduct a mark in only the first two cases of over-specification in that question. Probabilities should also be rounded to a sensible degree of accuracy.

ADDITIONAL NOTES RE Q8 PART iii

Use of n = 12

 $\overline{P(X \ge 7)} = 1 - P(X \le 6) = 1 - 0.9961 = 0.0039 < 5\%$

So significant or reject H_0 etc, so there evidence to suggest that Ali is better at winning games than Mark.

Gets B1 for P($X \ge 7$) B1 for 0.0039 M1 for comparison with 5% dep on B1 for 0.0039 A1 for significant E1 for evidence to suggest that Ali is better at winning games than Mark. Then award MR -1 so maximum of 4 possible

Comparison with 95% method

 B1 for $P(X \le 6)$

 B1 for 0.9133

January 2011

M1 for comparison with 95% dep on B1 A1 for not significant or 'accept H_0 ' or 'cannot reject H_0 ' E1

Smallest critical region method:

Either:

Smallest critical region that 7 could fall into gets B1 and has size 0.0867 gets B1, This is > 5% gets M1, A1, E1 as per scheme NB These marks only awarded if 7 used, not other values.

Use of *k* method with no probabilities quoted:

P(X ≥ 7) = 1 – P(X ≤ 6) > 5% P(X ≥ 8) = 1 – P(X ≤ 7) < 5% These may be seen in terms of *k* or *n*. Either k = 8 or k - 1 = 7 so k = 8 gets SC1 so CR is {8,9,10,11,12,13,14,15, 16, 17, 18, 19, 20} gets another SC1 and conclusion gets another SC1

Use of *k* method with one probability quoted:

1 - 0.9679 < 5% or 0.0321 < 5% gets B0B1M1 $P(X \le k - 1) = P(X \le 7)$ so k - 1 = 7 so k = 8 (or just k = 8) so CR is {8,9,10,11,12,13,14,15, 16, 17, 18, 19, 20} and conclusion gets A1E1

Two tailed test with $H_1: p \neq 0.2$ Hyp gets max B1B1B0E0 $P(X \ge 7) = 0.0867$ gets B1B1comparison with 2.5% gets M1 (must be 2.5%) Final marks A0E0

<u>Two tailed test done but with correct H₁: p>0.2</u> Hyp gets max B1B1B1E1

Mark Scheme

<u>if compare with 5%</u> ignore work on lower tail and mark upper tail as per scheme so can score full marks <u>if compare with 2.5%</u> no marks B0B0M0A0E0

One tailed test with $H_1: p < 0.2$ Hyp gets max B1B1B0E0 no further marks B0B0M0A0E0

Lower tailed test with $H_1: p>0.2$ Hyp gets max B1B1B0E0 no further marks B0B0M0A0E0

Line diagram method

B1 for squiggly line between 7 and 8 or on 8 exclusively (ie just one line), B1*dep* for arrow pointing to right, M1 0.0321 seen on diagram from squiggly line or from 8, A1E1 for correct conclusion

Bar chart method

B1 for line clearly on boundary between 7 and 8 or within 8 block exclusively (ie just one line),, B1*dep* for arrow pointing to right, M1 0.0321 seen on diagram from boundary line or from 8, A1E1 for correct conclusion

Using P(Not faulty) method

 $H_0: p=0.8$, $H_1: p<0.8$, where p represents the prob that Ali loses a game Ali claims that the proportion of games that he loses is less than 80% gets B1B1B1E1

 $P(X \le 13) = 0.0867 > 5\%$ So not significant, so there is not enough evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that Ali is better at winning games than Mark. Gets B1B1M1A1E1

Mathematics (MEI)

Advanced Subsidiary GCE

Unit 4766: Statistics 1

Mark Scheme for June 2011

PMT

PMT

June 2011

4766

Mark Scheme

1. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

2. For answers scoring no marks, you must either award NR (no response) or 0, as follows:

Award NR (no response) if:

- Nothing is written at all in the answer space
- There is a comment which does not in any way relate to the question being asked ("can't do", "don't know", etc.)
- There is any sort of mark that is not an attempt at the question (a dash, a question mark, etc.)

The hash key [#] on your keyboard will enter NR.

Award 0 if:

- There is an attempt that earns no credit. This could, for example, include the candidate copying all or some of the question, or any working that does not earn any marks, whether crossed out or not.
- 3. The following abbreviations may be used in this mark scheme.
 - M1 method mark (M2, etc, is also used)
 - A1 accuracy mark
 - B1 independent mark
 - E1 mark for explaining
 - U1 mark for correct units
 - G1 mark for a correct feature on a graph
 - M1 dep* method mark dependent on a previous mark, indicated by *
 - cao correct answer only
 - ft follow through
 - isw ignore subsequent working
 - oe or equivalent
 - rot rounded or truncated
 - sc special case
 - soi seen or implied
 - www without wrong working

4. Annotating scripts. The following annotations are available:

√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained)
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0,1
SC	Special case
^	Omission sign
MR	Misread

Highlighting is also available to highlight any particular points on a script.

5. The comments box will be used by the Principal Examiner to explain his or her marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts.

Please do not type in the comments box yourself. Any questions or comments you have for your Team Leader should be communicated by the *scoris* messaging system, e-mail or by telephone.

- 6. Write a brief report on the performance of the candidates. Your Team Leader will tell you when this is required. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.
- 7. Link Additional Objects with work relating to a question to those questions (a chain link appears by the relevant question number) see scoris assessor Quick Reference Guide page 19-20 for instructions as to how to do this this guide is on the Cambridge Assessment Support Portal and new users may like to download it with a shortcut on your desktop so you can open it easily! For AOs containing just formulae or rough working not attributed to a question, tick at the top to indicate seen but not linked. When you submit the script, *scoris* asks you to confirm that you have looked at all the additional objects. Please ensure that you have checked all Additional Objects thoroughly.
- 8. The schedule of dates for the marking of this paper is displayed under 'OCR Subject Specific Details' on the Cambridge Assessment Support Portal. It is vitally important that you meet these requirements. If you experience problems that mean you may not be able to meet the deadline then you must contact your Team Leader without delay.

PMT

	SECTION A			
Q1 (i) (ii)	SECTION A $1000 \times 0.013 = 13$ Or $0.2 \times 65 = 13$ Or $0.2 \times 5 \times 13 = 13$ Positive	M1 A1 M1 for 0.2 × 65 B1	2	Allow with or without working For MR 1000 \times 0. 13 = 130 Allow M1A0 Allow M1A0 if extra terms added eg 1000 \times 0.004 SC1 for 1000 \times 0.014 = 14 For whole calculation Allow +ve but NOT skewed to the right
(iii)	Minimum value = 1500	B1 Without wrong working	2	Do not allow 'positive correlation' Exact answers only unless good explanation such as eg no road has length zero so min is eg 1501
	Maximum value = 2500	B1 Without wrong working		SC1 for lower answer between 1499 and 1501 and upper between 2499 and 2501 Allow answer given as inequality
		TOTAL	5	
Q2 (i)	Either P(alphabetic order) = $\frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{120}$ or P(alphabetic order) = $\frac{1}{5!} = \frac{1}{120} = 0.00833$	M1 for 5! or 120 or ⁵ P ₅ seen or product of correct fractions A1 CAO	2	Allow 0.0083 or 1/120 but not 0.008
(ii)	Either P(picks Austen and Bronte) = $\frac{2}{5} \times \frac{1}{4} = \frac{1}{10}$ or P(picks Austen and Bronte) = $\frac{1}{5} \times \frac{1}{4} \times 2 = \frac{1}{10}$ or P(picks Austen and Bronte) = $\frac{1}{\binom{5}{2}} = \frac{1}{10}$	M1 for denominators M1 for 2× dep on correct denominators A1 CAO Or M1 for $\binom{5}{2}$ or 10 M1 for $1/\binom{5}{2}$ A1 CAO	3	$1/_{5}P_{2}$ scores M1 also 1/20 oe scores M1 even if followed by further incorrect working $\binom{5}{2}$ seen as part of a binomial expression gets M0M0A0
		TOTAL	5	

Q3 (i)	$P(X=0) = 0.75^6 = 0.178$	M1 for 0.75 ⁶ A1 CAO	2	Or from tables 0.1780 Or 729/4096 Allow 0.18 with working
(i) (ii)	$E(X) = np = 50 \times 0.178 = 8.9$	M1 for product A1 FT	2	FT their answer to (i) providing it's a probability NB A0 if subsequently rounded
		TOTAL	4	
Q4 (i)		G1 labelled linear scales on both axes G1 heights	2	Accept <i>r</i> or <i>x</i> for horizontal label and p or better for vertical including probability distribution Visual check only Allow G1G0 for points rather than lines Bars must not be wider than gaps for second G1 Condone vertical scale 1, 2, 3, 4, 5 and Probability (×) 1/18 as label BOD for height of <i>r</i> = 0 on vertical axis
(ii)	(A) If $X = 1$, possible scores are (1,2), (2,3), (3,4), (4,5), (5,6) and (2,1), (3,2), (4,3), (5,4), (6,5) (All are equally likely) so probability $= \frac{10}{36} = \frac{5}{18}$	M1 A1	2	Also M1 for a clear correct sample space seen with the ten 1's identified by means of circles or ticks oe soi. Must be convincing. No additional values such as 0,1 and 1,0 Do not allow ' just 10 ways you can have a difference of 1 so 10/36' or equivalent SC1 for possible scores are (1,2), (2,3), (3,4), (4,5), (5,6) so probability = $2 \times 5 \times 1/36$ with no explanation for $2 \times$
	(<i>B</i>) If <i>X</i> = 0, possible scores are (1,1), (2,2), (3,3), (4,4), (5,5), (6,6) so probability = $\frac{6}{36} = \frac{1}{6}$	B1	1	Also B1 for a clear correct sample space seen with the six 0's identified by means of circles or ticks oe soi. Must be convincing. No additional values. Allow both dice must be the same so probability = 6/36 = 1/6. Allow $1 \times 1/6 = 1/6$ BOD
(iii)	Mean value of $X = 0 \times \frac{1}{6} + 1 \times \frac{5}{18} + 2 \times \frac{2}{9} + 3 \times \frac{1}{6} + 4 \times \frac{1}{9} + 5 \times \frac{1}{18} = 1\frac{17}{18} = 1.94$	M1 for Σrp (at least 3 terms correct) A1 CAO	2	Or 35/18 Division by 6 or other spurious factor gets MAX M1A0
		TOTAL	7	

4766	6	Mark Scheme		June 2011
Q5 (i)		G1 for two labelled intersecting circlesG1 for at least 2 correct probabilities.G1 for remaining correct probabilities	3	Allow labels such as P(<i>W</i>) and P(<i>F</i>) Allow other sensible shapes in place of circles
(ii)	P(W) × P(F) = 0.14 × 0.41 = 0.0574 ≠ P(W∩F) = 0.11 So not independent. P(W $\sim E$) = 0.11 = 11	M1 for 0.41×0.14 A1 Condone dependent Must have full method www Must have either P($W \cap F$) or 0.11 M1 for correct fraction	2	Answer of 0.574 gets Max M1A0 Omission of 0.0574 gets M1A0 Max Or: $P(W F) = 0.11/0.41 = 0.268 \neq P(W) (= 0.14)$ M1 for full working $P(F W) = 0.11/0.14 = 0.786 \neq P(F) (= 0.41)$ M1 for full working No marks without correct working Allow 0.27 with working
(iii)	$P(W F) = \frac{P(W \cap F)}{P(F)} = \frac{0.11}{0.41} = \frac{11}{41} = 0.268$ This is the probability that a randomly selected respondent works (part time), given that the respondent is female.	A1 E1 For E1 must be in context – not just talking about events <i>F</i> and <i>W</i>	3	Allow 0.27 with working Allow 11/41 as final answer Condone 'if' or 'when' for 'given that' but not the words 'and' or 'because' or 'due to' for E1. E1 (independent of M1): the order/structure must be correct i.e. no reverse statement Allow 'The probability that a randomly selected female respondent works part time' oe
		TOTAL	8	

PMT

470				
Q6 (i)	Mean = $\frac{1 \times 10 + 2 \times 40 + 3 \times 15 + 4 \times 5}{70} = \frac{155}{70} = 2.214$ $S_{xx} =$ $1^2 \times 10 + 2^2 \times 40 + 3^2 \times 15 + 4^2 \times 5 - \frac{155^2}{70} = 385 - 343.21 = 41.79$ $s = \sqrt{\frac{41.79}{69}} = 0.778$	M1 A1 CAO M1 for Σfx^2 s.o.i. M1 for attempt at S_{xx} Dep on first M1 A1 CAO If 0.778 or better seen ignore previous incorrect working (calculator answer) Allow final answer to 2	5	For M1 allow sight of at least 3 double pairs seen from $1 \times 10 + 2 \times 40 + 3 \times 15 + 4 \times 5$ with divisor 70. Allow answer of $155/70$ or 2.2 or 2.21 or $31/14$ oe For $155/70 = \text{eg } 2.3$, allow A1 isw M1 for $1^2 \times 10 + 2^2 \times 40 + 3^2 \times 15 + 4^2 \times 5$ with at least three correct terms Using exact mean leads to $S_{xx} = 41.79$, s=0.778, Using mean 2.214 leads to $S_{xx} = 41.87$, s=0.779, Using mean 2.21 leads to $S_{xx} = 43.11$ and s = 0.790 Using mean 2.2 leads to $S_{xx} = 46.2$ and s = 0.818 Using mean 2 leads to $S_{xx} = 105$ and s = 1.233 All the above get M1M1A1 except the last one which gets M1M1A0 RMSD(divisor <i>n</i> rather than $n - 1$) = $\sqrt{(41.79/70)} =$ 0.772 gets M1M1A0 Alternative method, award M1for at least 3 terms of
(ii)	Mean would decrease Standard deviation would increase	B1 B1	2	$(1-2.214)^{2} \times 10 + (2-2.214)^{2} \times 40 + (3-2.214)^{2} \times 15$ $+ (4-2.214)^{2} \times 5(= 41.79)$ NB Allow full credit for correct answers without working (calculator used) Do not accept increase/decrease seen on their own – must be linked to mean and SD. Allow eg 'It would skew the mean towards zero' And eg 'It would stretch the SD' SC1 for justified argument that standard deviation might either increase or decrease according to number with no
		TOTAL	7	eggs (n≤496 increase, n≥497 decrease)

PMT

June	2011
------	------

	SECTION B			
Q7 (i)	$X \sim B(20, 0.15)$ (A) Either P(X = 1) = $\binom{20}{1} \times 0.15^{1} \times 0.85^{19} = 0.1368$ or P(X = 1) = P(X \le 1) - P(X \le 0) = 0.1756 - 0.0388 = 0.1368	M1 $0.15^{1} \times 0.85^{19}$ M1 $\binom{20}{1} \times p^{1} q^{19}$ A1 CAO OR: M2 for 0.1756 – 0.0388 A1 CAO	3	With $p + q = 1$ Allow answer 0.137 with or without working or 0.14 if correct working shown See tables at the website <u>http://www.mei.org.uk/files/pdf/formula_book_mf2.pdf</u> For misread of tables 0.3917 – 0.1216 = 0.2701 allow M1M1A0 also for 0.1304 – 0.0261 = 0.1043
	$(B) P(X \ge 2) = 1 - P(X \le 1)$ = 1 - 0.1756 = 0.8244	M1 for 1 – their 0.1756 A1 CAO	2	Provided 0.1756 comes from $P(X=0) + P(X=1)$ Allow answer 0.824 with or without working or 0.82 if correct working shown Point probability method: P(1) = 0.1368, $P(0) = 0.0388So 1 - P(X \le 1) = 1 - 0.1756 gets M1 then mark as perschemeM0A0 for 1 - P(X \le 1) = 1 - 0.4049 = 0.5951For misread of tables 1 - 0.3917 = 0.6083 allow M1A1also for 1 - 0.1304 = 0.8696 provided consistent withpart (A) OR M1A0 if formula used in part (A)$

4766		Mark Scheme		June 2011
(ii)	Let $X \sim B(n, p)$ Let $p = \text{probability of a 'no-show' (for population)}$ $H_0: p = 0.15$ $H_1: p < 0.15$ H_1 has this form because the hospital management hopes to reduce the proportion of no-shows.	B1 for definition of <i>p</i> B1 for H ₀ B1 for H ₁ E1 Allow correct answer even if H ₁ wrong	4	Allow $p = P(no-show)$ for B1 Definition of p must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H ₀ as long as it is a clear definition ' p = the probability of no-show, NOT just a sentence 'probability is 0.15' H ₀ : p(no-show) = 0.15, H ₁ : p(no-show) < 0.15 gets B0B1B1 Allow p=15%, allow θ or π and ρ but not x . However allow any single symbol <u>if defined</u> Allow H ₀ = p =0.15, Do not allow H ₀ : P(X = x) = 0.15, H ₁ : P(X = x) < 0.15 Do not allow H ₀ : =0.15, =15%, P(0.15), p(0.15), p(x)=0.15, x =0.15 (unless x correctly defined as a probability) Do not allow H ₁ : p ≤0.15, Do not allow H ₁ : p ≤0.15, Do not allow H ₁ : p ≤0.15, Do not allow H ₁ and H ₁ reversed for B marks but can still get E1 Allow NH and AH in place of H ₀ and H ₁ For hypotheses given in words allow Maximum B0B1B1E1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.15 oe.
(iii)	$P(X \le 1) = 0.1756 > 5\%$ So not enough evidence to reject H ₀ . Not significant. Conclude that there is not enough evidence to indicate that the proportion of no-shows has decreased.	M1 for probability seen, but not in calculation for point probability M1 dep for comparison A1	4	Zero for use of point prob - $P(X = 1) = 0.1368$ Do <u>NOT</u> FT wrong H ₁ Allow accept H ₀ , or reject H ₁ Full marks only available if 'not enough evidence to' oe mentioned somewhere Do not allow 'enough evidence to reject H ₁ ' for final mark but can still get 3/4 Upper end comparison: $1 - 0.1756 = 0.8244 < 95\%$ gets

PMT

PMT

June 2011

Mark S	Scheme
--------	--------

	Note: use of critical region method scores M1 for region {0} M1 for 1 does not lie in critical region, then A1 E1 as per scheme	E1 dep for conclusion in context.		M2 then A1E1 as per scheme Line diagram method M1 for squiggly line between 0 and 1 with arrow pointing to left, M1 0.0388 seen on diagram from squiggly line or from 0, A1E1 for correct conclusion <u>Bar chart method</u> M1 for line clearly on boundary between 0 and 1 and arrow pointing to left, M1 0.0388 seen on diagram from boundary line or from 0, A1E1 for correct conclusion
(iv)	6 < 8 So there is sufficient evidence to reject H ₀ Conclude that there is enough evidence to indicate that the proportion of no-shows appears to have decreased.	M1 for comparison seen A1 E1 for conclusion in context	3	Allow '6 lies in the CR' Do NOT insist on 'not enough evidence' here Do not FT wrong H_1 :p>0.15 but may get M1 In part (iv) ignore any interchanged H_0 and H_1 seen in part (ii)
(v)	For $n \le 18$, P($X \le 0$) > 0.05 so the critical region is empty.	E1 for $P(X \le 0) > 0.05$ E1 indep for critical region is empty	2	E1 also for sight of 0.0536 Condone $P(X = 0) > 0.05$ or all probabilities or values, (but not outcomes) in table (for $n \le 18$) > 0.05 Or 'There is no critical region' For second E1 accept 'H ₀ would always be accepted' Do <u>NOT</u> FT wrong H ₁ Use professional judgement - allow other convincing answers

18

TOTAL

Q8 (i)	Upper Bound 9.1 9.3 9.5 9.7 9.9 10.1 Cumulative frequency 0 5 12 27 43 50	B1 for cumulative frequencies G1 for scales		May be implied from graph. Condone omission of 0 at this stage. Linear horizontal scale. Linear vertical scale: 0 to 50
	50 au 30	G1 for labels		(no inequality scales - Not even $<9.1, <9.3, <9.5$) Heating quality or <i>x</i> and Cumulative frequency or just CF or similar but not just frequency or fd nor cumulative fd
		G1 for points (Provided plotted at correct UCB positions)	5	Plotted as (UCB, their cf). Ignore (9.1,0) at this stage. No midpoint or LCB plots. Plotted within ¹ / ₂ small square
	x	G1 for joining points		
		All G's dep on attempt at cumulative frequency but not cumulative fx's or other spurious values.		For joining all of 'their points' (line or smooth curve) AND now including (9.1,0) dep on previous G1 Mid point or LCB plots may score first three marks Can get up to 3/5 for cum freq bars Allow full credit if axes reversed correctly
				Lines of best fit could attract max 4 out of 5.
(ii)	Median = 9.67	B1 FT Allow answers between 9.66 and 9.68 without checking curve. Otherwise check curve.	3	Based on 25 th to 26 th value on a cumulative frequency graph ft their mid-point plot (not LCB's) approx 9.57 for m.p. plot Allow 9.56 to 9.58 without checking B0 for interpolation

4766		Mark Scheme		June 2011
	Q1 = 9.51 $Q3 = 9.83Inter-quartile range = 9.83 - 9.51 = 0.32$	B1 FT for Q3 or Q1 B1 FT for IQR providing both Q1 and Q3 are correct Allow answers between 9.50 and 9.52 and between 9.82 and 9.84 without checking curve. Otherwise check curve.		Based on 12^{th} to 13^{th} and 37^{th} to 38^{th} values on a cumulative frequency graph ft their mid -point plot (not LCB's) approx Q1 = 9.42; Q3 = 9.73 Allow 9.41 to 9.43 and 9.72 to 9.74 without checking B0 for interpolation Allow correct IQR from graph if quartiles not stated Lines of best fit: B0 B0 B0 here.
(iii)	Lower limit $9.51 - 1.5 \times 0.32 = 9.03$ Upper limit $9.83 + 1.5 \times 0.32 = 10.31$ Thus there are no outliers in the sample.	B1 FT their Q ₁ , IQR B1 FT their Q ₃ , IQR E1 NB E mark dep on both B marks	3	Any use of median ± 1.5 IQR scores B0 B0 E0 If FT leads to limits above 9.1 or below 10.1 then E0 No marks for ± 2 or 3 IQR In this part FT their values from (ii) if sensibly obtained (eg from LCB plot) or lines of best fit, but not from location ie 12.5, 37.5 or cumulative fx's or similar. For use of mean $\pm 2s$, Mean = 9.652, s = 0.235, Limits 9.182, 10.122 gets M1 for correct lower limit, M1 for correct upper limit, zero otherwise, but E0 since there could be outliers using this definition
(iv)	(A) P(All 3 more than 9.5) = $\frac{38}{50} \times \frac{37}{49} \times \frac{36}{48} = 0.4304$ (=50616/117600 = 2109/4900)	M1 for 38/50 × (triple product) M1 for product of remaining fractions A1 CAO	3	$(38/50)^{3}$ which gives answer 0.4389 scores M1M0A0 so watch for this. M0M0A0 for binomial probability including 0.76 ¹⁰⁰ but ${}^{3}C_{0} \times 0.24^{0} \times 0.76^{3}$ still scores M1 $(k/50)^{3}$ for values of k other than 38 scores M0M0A0 $\frac{k}{50} \times \frac{(k-1)}{49} \times \frac{(k-2)}{48}$ for values of k other than 38 scores M1M0A0 Correct working but then multiplied or divided by some factor scores M1M0A0

PMT

June	2011
------	------

(B) P(At least 2 more than 9.5) = $3 \times \frac{38}{50} \times \frac{37}{49} \times \frac{12}{48} + 0.4304$ = $3 \times 0.1435 + 0.4304$ = $0.4304 + 0.4304$ = 0.861 (=101232/117600 = 4218/4900 = 2109/2450)	M1 for product of 3 correct fractions seen M1 for $3 \times a$ sensible triple or sum of 3 sensible triples M1 indep for + 0.4304 FT (providing it is a probability) A1 CAO	4	Accept 0.43 with working and 0.430 without working Or $\binom{38}{3} / \binom{50}{3} = 2109/4900 = 0.4304$ Allow unsimplified fraction as final answer 50616/117600 Or $\binom{38}{2} \binom{12}{1} / \binom{50}{3} = 0.4304$ gets first two M1M1's SC1 for $3 \times \frac{38}{50} \times \frac{38}{50} \times \frac{12}{50}$ or other sensible triple and SC2 if this + their 0.4304 (= 0.8549) Allow 0.86 or 2109/2450 or 4218/4900, but only M3A0 for other unsimplified fractions
OR P(At least 2 more than 9.5) = 1 - (P(0) + P(1)) = $1 - \left[\left(\frac{12}{50} \times \frac{11}{49} \times \frac{10}{48} \right) + \left(3 \times \frac{12}{50} \times \frac{11}{49} \times \frac{38}{48} \right) \right]$ = 1 - [0.01122 + 0.12796] = 1 - 0.13918 = 0.861	M1 for $12/50 \times 11/49 \times 38/48$ M1 for 3 × a sensible triple or sum of 3 sensible triples M1 dep on both previous M1's for 1 -[0.01122 + 0.12796] A1 CAO TOTAL	18	Use of 1 – method 'with replacement' SC1 for $3 \times \frac{12}{50} \times \frac{12}{50} \times \frac{38}{50}$ SC2 for whole of 1 - $3 \times \frac{12}{50} \times \frac{12}{50} \times \frac{38}{50} + \frac{12}{50} \times \frac{12}{50} \times \frac{12}{50}$ (= 1 - (0.1313 + 0.0138) = 1 - 0.1451 = 0.8549)

<u>NOTE RE OVER-SPECIFICATION OF ANSWERS</u> If answers are grossly over-specified (see instruction 8), deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig. In general accept answers which are correct to 3 significant figures when given to 4 or 5 significant figures.

(Questio	n	Answer	Marks	Guidance		
1	(i)	P(All blu	e) $=\frac{30}{50} \times \frac{29}{49} \times \frac{28}{48} = 0.2071$	M1	For $\frac{30}{50}$ × (as part of a triple product)	$(30/50)^{3} = 0.216 \text{ scores}$ M1M0A0 $\frac{k}{50} \times \frac{(k-1)}{49} \times \frac{(k-2)}{48} \text{ for values of } k$ other than 30 scores M1M0A0 Zero for binomial unless simplifies to (3/5)^{3}	
				M1	For product of other two fractions	Correct working but then multiplied or divided by some factor scores M1M0A0	
			= 4060/19600 = 29/140 = 0.2071 the complete method	A1	CAO SC2 for P(All red) = 0.0582	Accept 0.21 with working and 0.207 without working Allow unsimplified fraction as final answer 24360/117600 oe	
1	(ii)	P(All red	$= \frac{20}{50} \times \frac{19}{49} \times \frac{18}{48} = 0.0582 \text{ or } \binom{20}{3} / \binom{50}{3} = 0.0582$	[3] M1	For P(All red)	SC2 for $1 - (30/50)^3 - (20/50)^3$ = $1 - 0.216 - 0.064 = 0.72$, providing consistent with (i) . If not consistent with (i) MOMOA0	
		=	t one of each colour) 1 - (0.2071 + 0.0582) = 0.7347 $\frac{29}{40} + \frac{57}{980} = 1 - \frac{260}{980} = 1 - \frac{13}{49} = \frac{36}{49}$	M1	For 1 – (0.2071 + 0.0582)		
		OR		A1 [3]	CAO	Allow 0.73 with working Allow unsimplified fraction as final answer 86400/117600 oe	
		P(2b,1r)-	P(1b,2r)	(M1)	For either $\frac{30}{50} \times \frac{29}{49} \times \frac{20}{48}$ or $\frac{20}{50} \times \frac{19}{49} \times \frac{30}{48}$	Allow M1 for $3 \times (30/50)^2 \times (20/50)$ or $3 \times (30/50) \times (20/50)^2$ and second M1 for sum of both if = 0.72 If not consistent with (i) M0M0A0	

G	uestion	Answer	Marks	G	uidance
		$= 3 \times \frac{30}{50} \times \frac{29}{49} \times \frac{20}{48} + 3 \times \frac{20}{50} \times \frac{19}{49} \times \frac{30}{48}$	(M1)	For sum of both or for $3 \times$ either	$\frac{\text{NB M2 also for}}{\frac{30}{50} \times \frac{20}{49} \left(\times \frac{48}{48} \right)}$
		$= 3 \times 0.1480 + 3 \times 0.0969 = 0.7347$	(A1)	CAO	even if not multiplied by 3 Allow 0.73 or better with working
		OR Either $\binom{30}{2} \times \binom{20}{1} / \binom{50}{3} \operatorname{or} \binom{30}{1} \times \binom{20}{2} / \binom{50}{3}$	(M1)		
			(M1) (A1)	For sum of both CAO	
2	(i)	${}^{9}C_{3} \times {}^{5}C_{3} = 84 \times 10 = 840$	M1 M1 A1	For either ⁹ C ₃ or ⁵ C ₃ For product of both correct combinations CAO	Zero for permutations
2	(ii)	Total number of ways of answering 6 from 14 is ${}^{14}C_6 = 3003$ Probability $= \frac{840}{3003} = \frac{40}{143} = 0.27972 = 0.280$	[3] M1 M1	For ${}^{14}C_6$ seen in part (ii) For their 840/ 3003 or their 840/ ${}^{14}C_6$	
			A1 [3]	FT their 840	Allow full marks for unsimplified fractional answers
		OR			
		${}^{6}C_{3} \times 5/14 \times 4/13 \times 3/12 \times 9/11 \times 8/10 \times 7/9 = 0.280$	(M1) (M1)	For product of fractions For ${}^{6}C_{3} \times$ correct product	SC1 for ${}^{6}C_{3} \times (5/14)^{3} \times (9/14)^{3} = 0.2420$
			(A1)		

Question		on	Answer	Marks	Guidance		
	-				_		
3	(i)		X ~ B(30, 0.85) P(X = 29) = $\binom{30}{29} \times 0.85^{29} \times 0.15^{1} = 30 \times 0.0013466 = 0.0404$	M1 M1	For $0.85^{29} \times 0.15^{1} =$ 0.0013466 For $\begin{pmatrix} 30\\ 29 \end{pmatrix} \times p^{29} \times q^{1}$	With $p + q = 1$	
				A1 [3]	САО	Allow 0.04 www If further working (EG P(<i>X</i> =29) –P(<i>X</i> =28)) give M2A0	
3	(ii)		$\begin{split} P(X = 30) &= 0.85^{30} = 0.0076 \\ P(X \ge 29) &= 0.0404 + 0.0076 = 0.0480 \end{split}$	M1 M1 A1 [3]	For 0.85^{30} For $P(X = 29) + P(X = 30)$ (not necessarily correct, but both attempts at binomial, including coefficient in (i)) CAO	Allow eg 0.04+0.0076=0.0476 Allow 0.05 with working	
3	(iii)		Expected number = 10 × 0.0480 = 0.480	M1 A1 [2]	For 10 × their (ii) FT their (ii) but if answer to (ii) leads to a whole number for (iii) give M1A0	provided (ii) between 0 and 1 Do not allow answer rounded to 0 or 1.	

0	Questi	on	Answer	Marks	Guidance	
4	(i)	(A)	P(third selected) = $0.92^2 \times 0.08 = 0.0677$ Or = 1058/15625	M1 M1 A1 [3]	For 0.92^2 For $p^2 \times q$ CAO SC1 for 'without repl =0.0690	With $p + q = 1$ With no extra terms Allow 0.068 but not 0.067 nor 0.07 acement' method 92/100×91/99×8/98
4	(i)	(B)	P (second) + P(third) = (0.92 × 0.08) + (0.92 ² × 0.08) = 0.0736 + 0.0677 = 0.1413 = 2208/15625	M1 A1 [2]	For 0.92 × 0.08 FT their 0.0677	With no extra terms Allow 0.141 to 0.142 and allow 0.14 with working 43 from 'without replacement' method
4	(ii)		P(At least one of first 20) = 1 - P(None of first 20)	M1	0.92 ²⁰	Accept answer of 0.81 or better from P(1) + P(2) +, or SC2 if all correct working shown but wrong answer No marks for 'without replacement' method'
			$= 1 - 0.92^{20} = 1 - 0.1887 = 0.8113$	M1 A1 [3]	1 – 0.92 ²⁰ CAO	Allow 0.81 with working but not 0.812

June 2012

Question Answer Marks Guidance 5 Let p = probability that a randomly selected frame is faulty B1 For definition of *p* in context Minimum needed for B1 is p =probability that frame/bike is faulty. Do not allow is p = probability that it is faulty Allow p = P(frame faulty)Definition of *p* must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H_0 as long as it is a clear definition ' p = the probability that frame is faulty, NOT just a sentence 'probability is 0.05' Do NOT allow 'p = the probability that faulty frames have increased' H₀: p = 0.05**B**1 H_0 : p(frame faulty) = 0.05, H_1 : p(frame faulty) > 0.05 gets B0B1B1 Allow p=5%, allow θ or π and ρ but not *x*. However allow any single symbol if defined Allow $H_0 = p = 0.05$, Allow $H_0: p = \frac{1}{20}$ Do not allow H_0 : P(X=x) = 0.05, H_1 : P(X=x) > 0.05Do not allow H₀: =0.05, =5%, P(0.05), p(0052), p(x)=0.05, *x*=0.05 (unless *x* correctly defined as a probability) Do not allow H₁: $p \ge 0.05$, Do not allow H_0 and H_1 reversed Allow NH and AH in place of H₀ and H₁ For hypotheses given in words allow Maximum B0B1B1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.05 oe. H₁: p > 0.05**B**1 $P(X \ge 4)$ **B**1 For notation $P(X \ge 4)$ or No further marks if point probs 1- P($X \le 3$) used - P(X = 4) = 0.0094This mark may be DO NOT FT wrong H₁ implied by 0.0109 as long But if H_1 is $p \ge 0.05$ allow the rest of the marks if earned so as no incorrect notation. $\max 7/8$ $= 1 - P(X \le 3) = 1 - 0.9891 = 0.0109$ B1* For 0.0109, indep of Or for 1 – 0.9891 previous mark

Mark Scheme

Question	Answer	Marks	Guidance	
	0.0109 < 0.05	M1*	For comparison with 5%	
	So reject H ₀	dep A1*	or significant or 'accept H ₁ '	
	There is evidence to suggest that the proportion of faulty frames has increased.	E1* Dep on A1	Must include 'sufficient evidence' or something similar s as 'to suggest that' ie an element of doubt for E1. 'Suffic evidence' or similar can be seen in the either the A mark the E mark.	cient
		[8]		
	OR <i>Critical region method:</i> Let $X \sim B(18, 0.05)$		No marks if CR not justified Do not insist on correct notat	
	$P(X \ge 3) = 1 - P(X \le 2) = 1 - 0.9419 = 0.0581 > 5\%$	(B1)	For 0.0581 as candidates have to work o two probabilities for full mar	out
	$P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9891 = 0.0109 < 5\%$	(B1)	For 0.0109	KS
		(M1)	For at least one correct comparison with 5%	
	So critical region is {4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}	(A1)	CAO for critical region Condone $\{4, 5\}, X \ge 4$, oe	but
	4 lies in the critical region, so significant,		and significant oe not $P(X \ge 4)$	
	There is evidence to suggest that the proportion of faulty frames has increased.	(E1)		

Mark Scheme

June 2	01	2
--------	----	---

Question	Answer					Guidance		
6 (i)	Engine size $500 \le x \le 1000$ $1000 < x \le 1500$ $1500 < x \le 2000$ $2000 < x \le 3000$ $3000 < x \le 5000$ 0.05 0.05 0.03 0.02 0.01 0 0 0 0 0 0 0.02 0.01 0 0 0 0 0 0 0 0		Group width 500 500 1000 2000 0 2000 0 2500 3000 3500 4 ngine Size	Frequency density 0.014 0.044 0.052 0.018 0.0035 0.0035	M1 A1 G1(L1)	At least 4 fds correct for M1 M1 can be also be gained from freq per 1000 – 14, 44, 52, 18, 3.5 (at least 4 correct) and A1 for all correct or freq per 500 - 7, 22, 26, 9, 1.75 Accept any suitable unit for fd, eg freq per 1000, BUT NOT FD per 1000 Allow fds correct to at least three dp If fd not explicitly given, M1 A1 can be gained from all heights correct (within one square) on histogram (and M1A0 if at least 4 correct) Allow restart with correct heights if given fd wrong For fd's all correct linear scales on both axes and label on vertical axis Label required on vert axis IN RELATION to first M1 mark ie fd or frequency density or if relevant freq/1000, etc (NOT fd/1000, but allow fd×1000, etc) Accept f/w or f/cw (freq/width or freq/class width) Ignore horizontal label and allow horizontal scale to start at 500 Can also be gained from an accurate key		
	INCORRECT DIA Frequency diagram Thus frequency den gets MAX M0A0G Frequency polygon	s can get M0, nsity = frequen 0G1G0	x x x x x x x x x x x x x x x x x x x		G1(W1)	Width of bars Must be drawn at 500, 1000etc NOT 499.5 or 500.5 etc NO GAPS ALLOWED Must have linear scale. No inequality labels on their own such as 500≤S<1000, etc but allow if a clear horizontal linear scale is also given.		

(Question	Answer	Marks	Guidance
			G1(H1)	Height of bars FT of heights <i>dep</i> on at least 3 heights correct and all must agree with their fds If fds not given and one height is wrong then max M1A0G1G1G0 – visual check only (within one square) –no need to measure precisely
6	(ii)	Do not know exact highest and lowest values so cannot tell what the midrange is. OR No and a counterexample to show it may not be 2750 OR (500 + 5000) / 2 = 2750. But very unlikely to be absolutely correct but probably close to the true value. Some element of doubt needed. Allow 'Likely to be correct'	E1	Allow comment such as 'Highest value could be 5000 and lowest could be 500 therefore midrange could be 2750' NO mark if incorrect calculation Sight of 1750 AND 3000 (min and max of midrange) scores E1
6	(iii)	$Mean = \frac{(750 \times 7) + (1250 \times 22) + (1750 \times 26) + (2500 \times 18) + (4000 \times 7)}{80}$ = $\frac{151250}{80} = 1891$ $\Sigma x^2 f = (750^2 \times 7) + (1250^2 \times 22) + (1750^2 \times 26) + (2500^2 \times 18) + (4000^2 \times 7))$ = $3937500 + 34375000 + 79625000 + 112500000 + 112000000$ = 342437500 $Sxx = 342437500 - \frac{151250^2}{80} = 56480469$	M1 A1 M1	For midpoints (at least 3 correct) No marks for mean or sd unless using midpoints Answer must <u>NOT</u> be left as improper fraction CAO Accept correct answers for mean (1890 or 1891) and sd (850 or 846 or 845.5) from calculator even if eg wrong S_{xx} given For sum of at least 3 correct multiples fx^2 Allow M1 for anything which rounds to 342400000
		$s = \sqrt{\frac{56480469}{79}} = \sqrt{714943} = 846$ Only an estimate since the data are grouped.	A1 E1 indep [5]	Only penalise once in part (iii) for over specification, even if mean and standard deviation both over specified. Allow SC1 for RMSD 840.2 or 840 from calculator Or for any mention of midpoints or 'don't have actual data' or 'data are not exact' oe

C	uestion	Answer	Marks	Guidance
6	(iv)	$\overline{x} - 2s = 1891 - (2 \times 846) = 199$ Allow 200	M1	For either. FT any positive mean and their positive sd/rmsd for M1 Only follow through numerical values, not variables such as s, so if a candidate does not find s but then writes here 'limit is 40.76+ 2 × standard deviation', do NOT award M1 No marks in (iv) unless using $\overline{x} + 2s$ or $\overline{x} - 2s$
		$\overline{x} + 2s = 1891 + (2 \times 846) = 3583$ Allow 3580 or 3600	A1	For both (FT) Do NOT penalise over specification here as it is not the final answer
		So there are probably some outliers	E1	Must include an element of doubt Dep on upper limit in range 3000 – 5000 Allow comments such as 'any value over 3583 is an outlier' Ignore comments about possible outliers at lower end.
6	(v)	Number of cars over 2000 cm ³ = $25/80 \times 2.5$ million = 781250 So duty raised = $781250 \times \pounds 1000 = \pounds 781$ million	M1 M1 indep A1 [3]	For 25/80× 2.5 million or (18+7) /80× 2.5 million For something × £1000 even if this is the first step CAO NB £781250000 is over specified so only 2/3
6	(vi)	Because the numbers of cars sold with engine size greater than 2000 cm ³ might be reduced due to the additional duty.	E1 [1]	Allow any other reasonable suggestion Condone 'sample may not be representative' Allow 'sample is not of NEW cars'

4766

Q	uestion	Answer	Marks	Guidance
7 7	(i) (ii)	$P(X = 0) = 0.4 \times 0.5^{4} = 0.025$ <u>NB ANSWER GIVEN</u> $P(X = 1) = (0.6 \times 0.5^{4}) + (4 \times 0.4 \times 0.5 \times 0.5^{3})$	M1 A1 [2] M1*	For 0.5^4 For 0.6×0.5^4 seen as a single term (not multiplied or divided
		= 0.0375 + 0.1 = 0.1375 <u>NB ANSWER GIVEN</u>	M1* M1* dep A1 [4]	by anything) For $4 \times 0.4 \times 0.5^4$ Allow 4×0.025 Watch out for incorrect methods such as (0.4/4) 0.1 <u>MUST</u> be justified For sum of both , dep on both M1's
7	(iii)	$\begin{bmatrix} 0.35 \\ 0.3 \\ 0.25 \\ 0.2 \\ 0.15 \\ 0.1 \\ 0.05 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ r \end{bmatrix}$	G1 G1	For labelled linear scales on both axes Dep on attempt at vertical line chart. Accept P on vertical axis For heights – visual check only but last bar taller than first and fifth taller than second and fourth taller than third. Lines must be thin (gap width > line width). All correct. Zero if vertical scale not linear Everything correct but joined up tops G0G1 MAX Everything correct but f poly G0G1 MAX Everything correct but bar chart G0G1 MAX Curve only (no vertical lines) gets G0G0 Best fit line G0G0 Allow transposed diagram
			[2]	

June 2012

C	Questio	on	Answer	Marks	Guidance
7	(iv)		'Negative' or 'very slight negative'	E1	E0 for symmetrical
1	(1)		Regarive of very signt negative	[1]	but E1 for (very slight) negative skewness even if also
				[1]	mention symmetrical
					Ignore any reference to unimodal
7	(v)		$E(X) = (0 \times 0.025) + (1 \times 0.1375) + (2 \times 0.3) + (3 \times 0.325) + (4 \times 0.175)$	M1	For Σrp (at least 3 terms correct)
	(.)		$+(5\times0.0375)$	A1	CAO
			=2.6		
			$E(X^{2}) = (0 \times 0.025) + (1 \times 0.1375) + (4 \times 0.3) + (9 \times 0.325) + 16 \times 0.175)$	M1*	For $\Sigma r^2 p$ (at least 3 terms correct)
			$+(25\times0.0375) = 0 + 0.1375 + 1.2 + 2.925 + 2.8 + 0.9375 = 8$		r (
			$Var(X) = 8 - 2.6^2$	M1*	for – their E(X) ²
				dep	
			= 1.24	AÎ	FT their $E(X)$ provided Var(X) > 0
				[5]	USE of $E(X-\mu)^2$ gets M1 for attempt at $(x-\mu)^2$ should see (-
					$(2.6)^2$, $(-1.6)^2$, $(-0.6)^2$, 0.4^2 , 1.4^2 , 2.4^2 (if E(X) correct but FT
					their E(X)) (all 5 correct for M1), then M1 for $\Sigma p(x-\mu)^2$ (at
					least 3 terms correct)
					Division by 5 or other spurious value at end gives max
					M1A1M1M1A0, or M1A0M1M1A0 if E(X) also divided by
					5.
			2		Unsupported correct answers get 5 marks.
7	(vi)		$P(\text{Total of } 3) = (3 \times 0.325 \times 0.025^2) + (6 \times 0.3 \times 0.1375 \times 0.025) +$	M1	For decimal part of first term 0.325×0.025^2
			$0.1375^3 = 3 \times 0.000203 + 6 \times 0.001031 + 0.002600 =$	M1	For decimal part of second term 0.3×0.1375×0.025
			0.000609 + 0.006188 + 0.002600 = 0.00940		
			(= 3×13/64000 + 6×33/32000 + 1331/512000)	M1	For third term – ignore extra coefficient
					All M marks above depend on triple probability products
				A1	CAO: AWRT 0.0094. Allow 0.009 with working.
				[4]	

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified, deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig. In general accept answers which are correct to 3 significant figures when given to 4 or 5 significant figures. If answer given as a fraction and as an over-specified decimal – ignore decimal and mark fraction.

ADDITIONAL NOTES RE Q5

Comparison with 95% method If 95% seen anywhere then B1 for P($X \le 3$) B1 for 0.9891 M1* for comparison with 95% dep on B1 A1* for significant oe E1*

Smallest critical region method:

Either:

Smallest critical region that 4 could fall into is $\{4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$ gets B1 and has size 0.0109 gets B1, This is < 5% gets M1*, A1*, E1* as per scheme NB These marks only awarded if 4 used, not other values.

Use of *k* method with no probabilities quoted:

P(X ≥ 3) = 1 – P(X ≤ 2) > 5% P(X ≥ 4) = 1 – P(X ≤ 3) < 5% These may be seen in terms of *k* or *n*. Either k = 4 or k - 1 = 3 so k = 4 gets SC1 so CR is {4,5,6,7,8,9,10,11,12,13,14,15, 16, 17, 18} gets another SC1 and conclusion gets another SC1

Use of *k* method with one probability quoted:

1 - 0.9891 < 5% or 0.0109 < 5% gets B0B1M1 $P(X \le k - 1) = P(X \le 3)$ so k - 1 = 3 so k = 4 (or just k = 8) so CR is {4,5,6,7,8,9,10,11,12,13,14,15, 16, 17, 18} and conclusion gets A1E1

Mark Scheme

June 2012

Two tailed test done but with correct $H_1: p > 0.05$ Hyp gets max B1B1B1if compare with 5%ignore work on lower tail and mark upper tail as per scheme but withhold A1E1if compare with 2.5%no marks B0B0M0A0E0

Line diagram method

B1 for squiggly line between 3 and 4 or on 4 exclusively (ie just one line), B1*dep* for arrow pointing to right, M1 0.0109 seen on diagram from squiggly line or from 4, A1E1 for correct conclusion

Bar chart method

B1 for line clearly on boundary between 3 and 4 or within 4 block exclusively (ie just one line), B1*dep* for arrow pointing to right, M1 0.0109 seen on diagram from boundary line or from 8, A1E1 for correct conclusion.

Using P(Not faulty) method

H₀: p=0.95, H₁: p<0.95 where p represents the prob that a frame is faulty gets B1B1B1. P(X \leq 14)=0.0109 < 5% So significant, etc gets B1B1M1A1E1

<u>NB</u>

If H₀: p=0.5, H₁: p>0.5, etc seen, but then revert to 0.05 in working allow marks for correct subsequent working. However if 0.5 used consistently throughout, then max B1 for definition of p and possibly B1 for notation P($X \ge 4$).

Q	Juesti	on	Answer	Marks	Guidance		
1	(i)		Positive	B1 [1]	САО		
1	(ii)		Mean = 5.064 allow 5.1 with working 126.6/25 or 5.06 without SD = 1.324 allow 1.3 with working or 1.32 without	B1 B2 [3]	Allow B1 for RMSD = 1.297 or var =1.753 or MSD = 1.683	Also allow B1 for $Sxx = 42.08$ or for $\Sigma x^2 = 683$ SC1 for both mean = 50.64 and SD = 13.24 (even if over-specified)	
1	(iii)		$\overline{x} - 2s = 5.064 - 2 \times 1.324 = 2.416$	B1FT	FT their mean and sd	For use of quartiles and IQR $Q_1 = 3.95$; $Q_3 = 6.0$; IQR = 2.05 3.95 - 1.5(2.05) gets M1 Allow other sensible definitions of quartiles	
		$\overline{x} + 2s = 5.064 + 2 \times 1.324 = 7.712$	M1	for $\overline{x} + 2s$ but withhold final E mark if their limits mean that there are no outliers.	6.0 + 1.5(2.05) gets M1		
			So there is an outlier.	A1FT E1 [4]	For upper limit Incorrect statement such as 7.6 and 8.1 are outliers gets E0 Do not award E1 if calculation error in upper limit	Limits 0.875 and 9.075 So there are no outliers NB do not penalise over-specification here as not the final answer but just used for comparison. FT from SC1	
2	(i)		r 2 3 4 5 $P(X = r)$ 3k 8k 15k 24k $3k + 8k + 15k + 24k = 1$	B1 M1	For correct table (ito <i>k</i> or correct probabilities 0.06, 0.16, 0.30, 0.48)	For their four multiples of k added and	
			k = 0.02	A1 [3]	or $k = 1/50$ (with or without working)	=1. Allow M1A1 even if done in part (ii) – link part (ii) to part (i)	

Q	uesti	on	Answer	Marks		Guidance
2	(ii)		$E(X) = (2 \times 0.06) + (3 \times 0.16) + (4 \times 0.30) + (5 \times 0.48) = 4.2$ or 21/5	M1 A1	For Σrp (at least 3 terms correct Provided 4 reasonable probabilities seen.	If probs wrong but sum = 1 allow full marks here. If sum \neq 1 allow max M1A0M1 M0A0 (provided all probabilities between 0 and 1) Or ito k
			or 21/5	AI	cao	or no k NB $E(X) = 210k$, $E(X^2) = 924k$ gets M1A0M1M0A0. $E(X) = 210k$, Var $(X) = 924k - (210k)^2$ gets M1A0M1M1A0.
			$E(X^2) = (4 \times 0.06) + (9 \times 0.16) + (16 \times 0.30) + (25 \times 0.48) = 18.48$	M1	For $\Sigma r^2 p$ (at least 3 terms correct)	
			$Var(X) = 18.48 - 4.2^2$	M1	dep for – their $E(X)^2$	
			= 0.84 = 21/25	A1	FT their $E(X)$ provided Var(X) > 0 (and of course $E(X^2)$ is correct)	Use of $E(X - \mu)^2$ gets M1 for attempt at $(x - \mu)^2$ should see $(-2.2)^2$, $(-1.2)^2$, $(-0.2)^2$, 0.8^2 , (if $E(X)$ wrong FT their E(X)) (all 4 correct for M1), then M1 for $\Sigma p(x - \mu)^2$ (at least 3 terms correct with their probabilities) Division by 4 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $E(X)$ also divided by 4. Unsupported correct answers get 5 marks
				[5]		
3	(i)		$P(L \cap W) = P(L W) \times P(W) = 0.4 \times 0.07 = 0.028$	M1	For $P(L W) \times P(W)$	
				A1 [2]	cao	

Q	uesti	on	Answer	Marks		Guidance
3	(ii)			B1 B1 B1	For two labelled intersecting circles For at least 2 correct probabilities. For remaining probabilities	FT their 0.028 provided < 0.038
2	(:::)			[3]		
3	(iii)		$P(L \cap W) = 0.028, P(L) \times P(W) = 0.038 \times 0.07 = 0.00266$	M1	For correct use of $P(L) \times P(W)$ If $P(L)$ wrong, max M1A0E0. No marks if $P(W)$ wrong	Or EG $P(L W) = 0.4$, $P(L) = 0.038$ Not equal so not independent M1 is for comparing with some attempt at numbers P(L W) with $P(L)$, A1 for 0.038 If $P(L)$ wrong, max M1A0E0
			Not equal so not independent	A1 E1* dep on M1 [3]	For 0.00266 Allow 'they are dependent' Do not award E1 if $P(L \cap W)$ wrong	
4	(i)		$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	M1	Seen	
			$\begin{pmatrix} 3 \end{pmatrix}$ = 165	A1 [2]	Cao	

Q	uesti	on	Answer	Marks		Guidance
4	(ii)		$\frac{\begin{pmatrix} 5\\2 \end{pmatrix} \times \begin{pmatrix} 6\\1 \end{pmatrix}}{\begin{pmatrix} 11\\3 \end{pmatrix}} + \frac{\begin{pmatrix} 5\\3 \end{pmatrix} \times \begin{pmatrix} 6\\0 \end{pmatrix}}{\begin{pmatrix} 11\\3 \end{pmatrix}} = \frac{60}{165} + \frac{10}{165} = \frac{70}{165} = \frac{14}{33} = 0.424$	M1	For intention to add correct two fractional terms	Or For attempt at correct two terms
			Alternative $1 - P(1 \text{ or } 0) = 1 - 3 \times \frac{5}{11} \times \frac{6}{10} \times \frac{5}{9} - \frac{6}{11} \times \frac{5}{10} \times \frac{4}{9}$ $= 1 - \frac{5}{11} - \frac{4}{33} = \frac{14}{33}$	M1 M1	For numerator of first term For numerator of sec term Do not penalise omission of $\begin{pmatrix} 6\\ 0 \end{pmatrix}$	For prod of 3 correct fractions =4/33 For whole expression ie $3 \times \frac{5}{11} \times \frac{4}{10} \times \frac{6}{9} \left(= \frac{4}{11} \right) (= 3 \times 0.1212)$
			M1 for 1 – P(1 or 0), M1 for first product, M1 for ×3, M1 for second product, A1	M1 A1 [5]	For correct denominator	For attempt at $\frac{5}{11} \times \frac{4}{10} \times \frac{3}{9} \left(=\frac{2}{33}\right)$ cao
5	(i)		$\left(\frac{5}{6}\right)^2 \times \frac{1}{6} = \frac{25}{216} (= 0.116)$	[5] M1 M1 A1 [3]	For 5/6 (or 1 – 1/6) seen For whole product cao	Use of binomial can get max first M1 If extra term or whole number factor present give M1M0A0 Allow 0.12 with working
5	(ii)		$1 - \left(\frac{5}{6}\right)^{10} = 1 - 0.1615 = 0.8385$	M1 A1 [2]	For (5/6) ¹⁰ (without extra terms) cao	Allow 0.838 or 0.839 without working and 0.84 with working. For addition $P(X = 1) + + P(X = 10)$ give M1A1 for 0.84 or better, otherwise M0A0

Mark Scheme

Q	Question		Answer		Guidance		
6	(i)		$4 + \frac{1}{2}$ of $18 = 4 + 9 = 13$	M1 A1 [2]	For ¹ / ₂ of 18 cao	13/100 gets M1A0	
6	(ii)		(Median) = 50.5 th value Est = 140 + $\left(\frac{25.5}{29}\right) \times 5$ or = 140 + $\left(\frac{50.5 - 25}{54 - 25}\right) \times 5$	M1 M1	For 50.5 seen For attempt to find this value	SC2 for use of 50 th value leading to Est = 140 + (25 /29 × 5) = 144.3 (SC1 if over-specified) or Est = 145 - $\left(\frac{3.5}{29}\right)$ × 5 = 144.4	
			= 144.4	A1 [3]		NB no marks for mean = 144.35 NB Watch for over-specification	

Mark Scheme

Question		Ans	wer		Marks	Guidance		
6 (iii)	Height $125 \le x \le 140$ $140 < x \le 145$ $145 < x \le 150$ $150 < x \le 160$ $160 < x \le 170$	Frequency 25 29 24 18 4	Group width 15 5 5 10 10	Frequency density 1.67 5.80 4.80 1.80 0.40	M1 A1	For fd's - at least 3 correct Accept any suitable unit for fd such as eg freq per cm. correct to at least one dp allow 1.66 but not 1.6 for first fd	M1 can be also be gained from freq per $10 - 16.7$, 58, 48, 18, 4 (at least 3 correct) or freq per 5 – 8.35, 29, 24, 9, 2 for all correct. If fd not explicitly given, M1 A1 can be gained from all heights correct (within one square) on histogram (and M1A0 if at least 3 correct)	
	7 6 4 5 4 4 2 1				G1	linear scales on both axes and label on vertical axis	Linear scale and label on vertical axis IN RELATION to first M1 mark ie fd or frequency density or if relevant freq/10, etc (NOT eg fd/10). However allow scale given as fd×10, or similar Accept f/w or f/cw (freq/width or freq/class width)	
	0 120 125 130		5 150 155 16 Height	60 165 170 175	W1	width of bars	Can also be gained from an accurate key G0 if correct label but not fd's. Must be drawn at 125, 140 etc NOT 124.5 or 125.5 etc NO GAPS ALLOWED Must have linear scale. No inequality labels on their own such as 125≤S<140, etc but allow if a clear horizontal linear scale is also given.	
					H1	height of bars	Ignore horizontal label. Height of bars – must be linear vertical scale. FT of heights dep on at least 3 heights correct and all must agree with their	

47	66
	υυ.

Question	Answer	Marks		Guidance
		[5]		fds If fds not given and at least 3 heights correct then max M1A0G1W1H0 Allow restart with correct heights if given fd wrong (for last three marks only)
6 (iv)	4 boys 0.6 × 15 = 9 girls So 5 more girls	M1 A1 A1 [3]	For 0.6 × 15 For 9 girls cao	Or $45 \times 0.2 = 9$ (number of squares and 0.2 per square)
6 (v)	Frequencies and midpoints for girls are	B1 B1 M1 M1* Dep on M1 A1 [5]	For at least three frequencies correct At least three midpoints correct For attempt at $\sum xf$ For division by 100 Cao NB Watch for over- specification	No further marks if not using midpoints For sight of at least 3 <i>xf</i> pairs Allow answer 146.9 or 147 but not 150 NB Accept answers seen without working (from calculator) Use of 'not quite right' midpoints such as 132.49 or 132.51 etc can get B1B0M1M1A0

Q	uesti	on	Answer	Marks	Guidance	
7	(i)	(<i>A</i>)	$X \sim B(10, 0.35)$	M1	or $0.35^5 \times 0.65^5$	
			P(5 accessing internet) = $\binom{10}{5} \times 0.35^5 \times 0.65^5$	M1	$\operatorname{For}\binom{10}{5} \times p^5 \times q^5$	With $p + q = 1$ Also for 252×0.0006094
			= 0.1536	A1	cao	Allow 0.15 or better <u>NB 0.153 gets A0</u> See tables at the website <u>http://www.mei.org.uk/files/pdf/formu</u> <u>la_book_mf2.pdf</u>
			OR from tables = $0.9051 - 0.7515 = 0.1536$	OR M2 A1 [3]	For 0.9051 – 0.7515 cao	
7	(i)	(B)	$P(X \ge 5) = 1 - P(X \le 4)$ =1 - 0.7515 = 0.2485	M1 A1 [2]	For 0.7515 cao	Accept 0.25 or better – allow 0.248 or 0.249 Calculation of individual probabilities gets B2 if fully correct 0.25 or better, otherwise B0.
7	(i)	(C)	$E(X) = np = 10 \times 0.35$ = 3.5	M1 A1 [2]	For 10 × 0.35 cao	If any indication of rounding to 3 or 4 allow M1A0

⁴⁷⁶⁶

Q	uesti	on	Answer	Marks		Guidance
7	(ii)		Let $X \sim B(20, 0.35)$ Let p = probability of a customer using the internet (for population)	B1	For definition of <i>p</i> in context	Minimum needed for B1 is $p =$ probability of using internet. Allow $p = P(using internet)$ Definition of p must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H ₀ as long as it is a clear definition 'p = the probability of using internet', Do NOT allow 'p = the probability of using internet is different'
			H ₀ : <i>p</i> = 0.35	Β1	For H ₀	Allow p=35%, allow only p or θ or π or ρ . However allow any single symbol <u>if defined</u> (including <i>x</i>) Allow H ₀ = <i>p</i> =0.35, Allow H ₀ : $p=^{7}/_{20}$ or $p=^{35}/_{100}$ Allow NH and AH in place of H ₀ and H ₁ Do not allow H ₀ : P(<i>X</i> = <i>x</i>) = 0.35 Do not allow H ₀ : =0.35, =35%, P(0.35), p(<i>x</i>)=0.35, <i>x</i> =0.35 (unless <i>x</i> correctly defined as a probability) Do not allow H ₀ and H ₁ reversed For hypotheses given in words allow Maximum B0B1B1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.35 oe Thus eg H ₀ : p(using internet) = 0.35, H ₁ : p(using internet) \neq 0.35 gets B0B1B1

Mark Scheme

January	2013
---------	------

Question	Answer	Marks		Guidance
	H ₁ : $p \neq 0.35$	B1	For H ₁	Allow ' $p < 0.35$ or $p > 0.35$ 'in place of $p \neq 0.35$
	H_1 has this form because the test is to investigate whether the proportion is different, (rather than lower or higher).	E1		Do not allow if H_1 wrong.
	$P(X \ge 10)$	B1	For notation $P(X \ge 10)$ or $P(X > 9)$ or $1 - P(X \le 9)$ (as long as no incorrect notation)	This mark may be implied by 0.1218 as long as no incorrect notation. No further marks if point probs used - P(X = 10) = 0.0686 (do not even give the notation mark for correct notation) DO NOT FT wrong H ₁ , but see extra notes
	= 1 - 0.8782 = 0.1218	B1*	For 0.1218 Allow 0.12	Or for 1 – 0.8782 Indep of previous mark
	> 2.5%	M1* dep	For comparison with 2.5%	
	So not significant. Conclude that there is not enough evidence to indicate that the probability is different. (Must state 'probability', not just 'p')	A1* E1* dep on A1		Allow 'accept H_0 ' or 'reject H_1 ' Must include 'sufficient evidence' or something similar such as 'to suggest that' ie an element of doubt either in the A or E mark.
	ALTERNATIVE METHOD FOR FINAL 5 MARKS			
	Critical region method LOWER TAIL $P(X \le 2) = 0.0121 < 2.5\%$ $P(X \le 3) = 0.0444 > 2.5\%$	B1	For either probability	Do not insist on correct notation as candidates have to work out two probabilities for full marks. If only upper tail of CR given (or only upper tail justified), allow max 4/5 for final 5 marks.
	UPPER TAIL $P(X \ge 11) = 1 - P(X \le 10) = 1 - 0.9468 = 0.0532 > 2.5\%$ $P(X \ge 12) = 1 - P(X \le 11) = 1 - 0.9804 = 0.0196 < 2.5\%$	B1	For either probability	

Mark Scheme

January 20	13	3
------------	----	---

Q	uesti	on	Answer	Marks		Guidance
			So critical region is {0,1,2,12,13,14,15,16,17,18,19,20}	M1* dep	cao dep on at least one correct comparison with 2.5%	No marks if CR not justified Condone $\{0,1,2, 12, \dots 20\}, X \le 2, X \ge 12$, oe but not $P(X \le 2)$ etc
			So not significant Conclude that there is not enough evidence to indicate that the probability is different.	A1* E1* dep on A1		NB If CR found correctly then P(X = 10) subsequently found but cand says '10 not in CR' then allow up to all last five marks. If do not say '10 not in CR' allow none of last five marks
7	(iii)		0.0022 < 2.5% So reject H _o , Significant. Conclude that there is enough evidence to indicate that the probability is different.	B1 E1* dep [2]	For either reject H_o or significant, dep on correct comparison Dep on good attempt at correct hypotheses in part (ii)	If they have H_1 : p>0.35, allow SC1 if all correct including comparison with 5%.

January 2013

APPENDIX

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified, deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non-probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig.

Additional notes re Q7 part ii

Comparison with 97.5% method If 97.5% seen anywhere then B1 for $P(X \le 9)$ B1 for 0.8782 M1* for comparison with 97.5% dep on second B1 A1* for not significant oe E1*

Smallest critical region method: Smallest critical region that 10 could fall into is {10,11,12,13,14,15, 16, 17, 18,19,20} gets B1 and has size 0.1218 gets B1, This is > 2.5% gets M1*, A1*, E1* as per scheme NB These marks only awarded if 10 used, not other values.

<u>Use of *k* method with no probabilities quoted:</u> This gets zero marks.

Use of *k* method with one probability quoted: Mark as per scheme

Line diagram method and Bar chart method No marks unless correct probabilities shown on diagram, then mark as per scheme.

Upper tailed test done with H_1 : p>0.35 Hyp gets max B1B1B0E0 If compare with 5% give SC2 for $P(X \ge 10) = 1 - 0.8782 = 0.1218 > 5\%$ and SC1 for final conclusion (must be 'larger than' not 'different from') If compare with 2.5% no further marks B0B0M0A0E0

Lower tailed test done with H_1 : p<0.35 No marks out of last 5.

0	Juestio	on	Answer	Marks		Guidance
1	(i)		Mean = $\frac{24940}{100}$ = 249.4g or 249g	B1	Ignore units	CAO NB 249.40 gets B0 for over- specification
			$Sxx = 6240780 - \frac{24940^2}{100} = 20744$	M1	For Sxx	M1 for 6240780 - $100 \times \text{their mean}^2$ BUT NOTE M0 if their $S_{xx} < 0$
			$s = \sqrt{\frac{20744}{99}} = \sqrt{209.53} = 14.4751 = 14.5g$	A1	CAO ignore units	For s ² of 210 (or better) allow M1A0 with or without working For RMSD of 14.4 (or better) allow M1A0 provided working seen For RMSD ² of 207 (or better) allow M1A0 provided working seen Allow 14.48 but NOT 14.47
				[3]		
1	(ii)		New mean = $(0.9 \times 249.4) - 15 = 209.5g$	B1	FT their mean provided answer is positive	If candidate 'starts again' only award marks for CAO Allow 209
			New sd = $0.9 \times 14.48 = 13.03$ g	M1	FT their sd	Or for $0.9^2 \times 14.5^2$
				A1	FT Allow 13.0 to 13.1	Deduct at most 1 mark overall in whole question for over-specification of Mean and 1 mark overall for SD
				[3]		

	Juestio	n	Answer	Marks		Guidance
2	(i)		$3 \times \frac{5}{10} \times \frac{4}{9} \times \frac{5}{8} = \frac{300}{720} = \frac{5}{12} = (0.4167)$	M1	For 5/10 × 4/9	Correct working but then multiplied or divided by some factor scores M1M1M0A0
				M1	For \times 5/8	Zero for binomial Allow M2 for equivalent triple such as $\frac{5}{10} \times \frac{5}{9} \times \frac{4}{8}$
				M1	For $3 \times$ triple product	Or 3 separate equal triplets added
				A1	CAO (Fully simplified)	Answer must be a fraction
				[4]		
			Or $\binom{5}{3} \times \binom{5}{3}$	M1*	For $\binom{5}{2} \times \binom{5}{1}$	Seen
			$\frac{\binom{5}{2} \times \binom{5}{1}}{\binom{10}{3}} = \frac{10 \times 5}{120} = \frac{5}{12}$	M1*	For $\begin{pmatrix} 10\\ 3 \end{pmatrix}$	Seen
				M1*	For whole fraction	Correct working but then multiplied or
				dep		divided by some factor scores M1M1M0A0
				A1	CAO (Fully simplified)	
2	(ii)		$(7 (5)^3 (5)^4)$	M1FT	For first probability	Allow ⁴ C ₃
			$4 \times \frac{7}{12} \times \left(\frac{5}{12}\right)^3 + \left(\frac{5}{12}\right)^4$	M1FT	For $(5/12)^4$	
				M1FT	For sum of both correct probabilities	Provided sum <1
			= 0.169 + 0.030 = 0.199	A1	CAO	Alternative for 1- $(P(0)+P(1)+P(2))$
			Or $=\frac{875}{5184} + \frac{625}{20736} = \frac{1375}{6912}$		Do not allow 0.2, unless fuller answer seen first	allow M1FT for two 'correct' probs, M1 for sum of three 'correct', M1 for 1 – answer, A1 CAO
				[4]		

4766

(Questi	on	Answer	Marks		Guidance
3	(i)		X ~ B(50, 0.1)	M1	For $0.1^5 \times 0.9^{45}$	
			P(5 underweight) = $\binom{50}{5} \times 0.1^5 \times 0.9^{45} = 0.1849$	M1	For $\binom{50}{5} \times p^5 \times q^{45}$	With $p + q = 1$ Also for $2118760 \times 8.73 \times 10^{-8}$
				A1	CAO	Allow 0.185 or better <u>NB 0.18 gets A0</u>
				[3]		
3	(ii)		$X \sim B(20, 0.1)$ P(X \ge 1) = 1 - P(X = 0) = 1 - 0.1216 = 0.8784	M1 A1 [2]	For 0.1216 CAO	Allow M1 for 0.9 ²⁰ Allow 0.878 or better See tables at the website <u>http://www.mei.org.uk/files/pdf/formula</u> <u>_book_mf2.pdf</u>
3	(iii)		$E(X) = 48 \times 0.8784 = 42.16 (= 42.2)$	M1 A1 [2]	FT their probability from part (ii)	If any indication of rounding to 42 or 43 or to another integer on FT allow M1A0 SC1 for $48 \times$ their <i>p</i> giving an integer answer. NB 0.6083 in (ii) leads to 29.20

(Juestic	on	Answer	Marks		Guidance
4	(i)		$P(X = 15) = \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}$	M1	For product of three correct fractions	
			$= = \frac{6}{120} = \frac{1}{20} = 0.05$ Or $\frac{1}{{}_{6}C_{3}} = \frac{1}{20} = 0.05$ Or $\frac{3 \ge 3!}{6!} = \frac{1}{20} = 0.05$	A1	NB ANSWER GIVEN NB 1 – (0.45 + 0.45 + 0.05) = 0.05 scores M0A0	Full marks for $3! \times \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} = \frac{6}{120} = 0.05$ Allow 3×2 in place of $3!$ SC1 for $6 \times \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} = \frac{6}{120} = 0.05$
				[2]		
4	(ii)		$E(X) = (15 \times 0.05) + (1010 \times 0.45) + (2005 \times 0.45) + (3000 \times 0.05)$	M1	For Σrp (at least 3 terms correct)	
			= 1507.5 so 1508 (4sf)	A1	CAO	Allow 1507, 1510, 1507.5, 1507.50 or 3015/2
			$E(X^{2}) = (15^{2} \times 0.05) + (1010^{2} \times 0.45) + (2005^{2} \times 0.45) + (3000^{2} \times 0.05)$ = 2718067.5	M1	For $\Sigma r^2 p$ (at least 3 terms correct)	Use of $E(X-\mu)^2$ gets M1 for attempt at $(x-\mu)^2$ should see $(-1492.5)^2$, $(-497.5)^2$, 497.5^2 , 1492.5^2 , (if $E(X)$ wrong FT their $E(X)$) (all 4 correct for M1), then M1 for $\Sigma p(x-\mu)^2$ (at least 3 terms correct with their probabilities) Division by 4 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $E(X)$ also divided by 4. Unsupported correct answers get 5 marks
			Var (X) = $2718067.5 - (1507.5)^2$	M1	dep for – their $E(X)^2$	
			= 445511.25 so 445500 (4sf)	A1	FT their $E(X)$ provided Var(X) > 0 (and of course $E(X^2)$ is correct)	Allow 446000
				[5]		

(Questio	n Answer	Marks		Guidance
5	(i)	Because if people cannot make a correct identification, then the probability that they guess correctly will be 0.5 For 'equally likely to guess right or wrong' or 'two outcomes with equal probability' or '50:50 chance of success' or 'right one in two occasions on average' or 'two (equally likely) outcomes' etc	E1 E1	For idea of a guess or 'chosen at random' For idea of two outcomes	NB The question includes the sentence 'She suspects that people do no better than they would by guessing.', so this on its own does not get the mark for the idea of a guess
			[2]		
5	(ii)	'Because people may do better than they would by guessing' or similar	B1	For idea of selecting correctly /identifying /knowing	No marks if answer implies that it is because there are over half in the sample who make a correct identification
			[1]		
5	(iii)	$P(X \ge 13) = 1 - P(X \le 12) = 1 - 0.8684 = 0.1316$ NB PLEASE ANNOTATE THE TOP AND BOTTOM OFTHE EXTRA PAGE IF NOT USED $0.1316 > 0.05$ So not significant	M1 B1* M1* dep A1*	For notation $P(X \ge 13)$ or $P(X > 12)$ or $1 - P(X \le 12)$ For 0.1316 For comparison with 5%	Notation $P(X = 13)$ scores M0. If they have the correct $P(X \ge 13)$ then give M1 and ignore any further incorrect notation. Or for $1 - 0.8684$ indep of previous mark Allow 'accept H ₀ ' or 'reject H ₁ '
		There is insufficient evidence to suggest that people can make a correct identification.	E1* dep	NB Point probabilities score zero.	Must include 'insufficient evidence' or something similar such as 'to suggest that' ie an element of doubt either in the A or E mark. Must be in context to gain E1 mark. Do not allow 'sufficient evidence to suggest proportion making correct identification is 0.5' or similar

June	2013
------	------

Question	Answer	Marks		Guidance
	ALTERNATIVE METHOD – follow method above unless some mention of CR seen		Must see some reference to CR to gain any marks	
	some mention of CR seen Critical region method UPPER TAIL $P(X \ge 14) = 1 - P(X \le 13) = 1 - 0.9423 = 0.0577 > 5\%$ $P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.9793 = 0.0207 < 5\%$ So critical region is {15,16,17,18,19,20} 13 not in CR so not significant There is insufficient evidence to indicate that people can make a correct identification.	B1 M1* M1* dep A1* E1* dep on A1 [5]	CR to gain any marks For either probability For a correct comparison with 5% cao dep on the two correct probabilities Must include '13 not in CR' Ignore any work on lower critical region	Do not insist on correct notation as candidates have to work out two probabilities for full marks. Allow comparison in form of statement 'critical region at 5% level is' No marks if CR not justified Condone {15, 20}, $X \ge 15$, oe but not P($X \ge 15$,) etc Allow 'accept H ₀ ' or 'reject H ₁ ' NB If CR found correctly, then P(X=13) subsequently found, but cand says '13 not in CR' then allow up to all five marks. If do not say '13 not in CR' allow no marks

(Questic	n	Answer	Marks		Guidance
6	(i)		Median = 3.32 kg Q1 (= 6.5th value) = 2.83 Q3 (= 19.5th value) = 3.71 Inter-quartile range = $3.71 - 2.83 = 0.88$	B1 B1 B1 [3]	For Q1 or Q3 For IQR dep on both quartiles correct	For Q1 allow 2.82 to 2.84 For Q3 allow 3.70 to 3.72 If no quartiles given allow B0B1 for IQR in range 0.86 to 0.90
	(ii)		1 1.5 2 2.5 3 3.5 4 4.5 Weight (kg)	G1 G1 G1	For reasonably linear scale shown. For boxes in approximately correct positions, with median just to right of centre For whiskers in approximately correct positions in proportion to the box FT their median and quartiles if sensible – guidance above is only for correct values	Dep on attempt at box and whisker plot with at least a box and one whisker. Condone lack of label. Do not award unless RH whisker significantly shorter than LH whisker Allow LH whisker going to 2.5 and outlier marked at 1.39
				[3]		
6	(iii)		Lower limit $2.83 - (1.5 \times 0.88) = 1.51$	B1	For 1.51 FT	Any use of <u>median</u> \pm 1.5 × IQR scores B0 B0 E0 No marks for \pm 2 or 3 × IQR In this part FT their values from (i)or (ii) if sensibly obtained but not from location ie 6.5, 19.5
			Upper limit $3.71 + (1.5 \times 0.88) = 5.03$ Exactly one baby weighs less than 1.51 kg and none weigh	B1 E1*	For 5.03 FT Dep on their 1.51 and 5.03	Do not penalise over-specification as not the final answer Do not allow unless FT leads to upper
			over 5.03 kg so there is exactly one outlier.			limit above 4.34 and lower limit between 1.39 and 2.50

(Question	Answer	Marks		Guidance
		'Nothing to suggest that this baby is not a genuine data value so she should not be excluded' or 'This baby is premature and therefore should be excluded'.	E1* Dep	Any sensible comment in context	For use of mean \pm 2sd allow B1 For 3.27 + 2 × 0.62= 4.51 B1 For 3.27 - 2 × 0.62= 2.03 Then E1E1 as per scheme
			[4]		
6	(iv)	Median = 3.5 kg Q1 = 50th value = 3.12 Q3 = 150 th value = 3.84	B1 B1	For Q1 or Q3	For Q1 allow 3.11 to 3.13 For Q3 allow 3.83 to 3.85
		Inter-quartile range = $3.84 - 3.12 = 0.72$	B1	For IQR FT their quartiles	Dep on both quartiles correct
			[3]		If no quartiles given allow B0B1 for IQR in range 0.70 to 0.74
6	(v)	Female babies have lower weight than male babies on the whole	E1 FT	Allow 'on average' or similar in place of 'on the whole'	Do not allow lower median
		Female babies have higher weight variation than male babies	E1 FT	Allow 'more spread' or similar but not 'higher range' Condone less consistent	Do not allow higher IQR, but SC1 for both lower median and higher IQR, making clear which is which
			[2]		
6	(vi)	Male babies must weigh more than 4.34 kg			
		Approx 10 male babies weigh more than this.	M1*	For 10 or 9 or 8	Or 200 – 190, 200 –191 or 200 –192
		Probability = $\frac{10}{200} \times \frac{9}{199} = \frac{90}{39800} = \frac{9}{3980} = 0.00226$ or $\frac{9}{200} \times \frac{8}{199} = \frac{72}{39800} = 0.00181$	M1* dep	For first fraction multiplied by any other different fraction (Not a binomial probability)	Allow any of these answers For spurious factors, eg 2 × correct answer allow M1M1A0
		or $\frac{8}{200} \times \frac{7}{199} = \frac{56}{39800} = \frac{7}{4975} = 0.00141$	A1	CAO Allow their answer to min of 2 sf	SC1 for $n/200 \times (n-1)/199$
			[3]		

4766

Question		on	Answer	Marks	Guidance	
7	Questic (i)	on 	AnswerThirdThirdSecond 0.2 Hit 0.8 Miss 0.1 Hit 0.2 Hit 0.2 Hit 0.1 Hit 0.2 Hit 0.3 Miss 0.2 Hit 0.3 Miss 0.95 Miss	Marks G1 G1 G1 G1	For first set of branches For second set of branches (indep) For third set of branches (indep) For labels	Guidance All probabilities correct All probabilities correct All probabilities correct All correct labels for 'Hit' and 'Miss', 'H' and 'M' etc. Condone omission of First, Second, Third.
7	(ii)	A	P(Hits with at least one) = $1 - P(\text{misses with all})$ = $1 - (0.9 \times 0.95 \times 0.95) = 1 - 0.81225 = 0.18775$	[4] M1* M1* dep A1	For 0.9 × 0.95 × 0.95 For 1 – ans CAO	FT their tree for both M marks, provided three terms 0.188 or better. Condone 0.1877 Allow 751/4000
			ALTERNATIVE METHOD only if there is an attempt to add 7 probabilities At least three correct triple products Attempt to add 7 triple products FURTHER ALTERNATIVE METHOD $0.1 + 0.9 \times 0.05$ Above probability $+ 0.9 \times 0.95 \times 0.05$	M1 M1 A1 M1 M1 A1 [3]	CAO	(not necessarily correct triple products)

Question		n	Answer	Marks	Guidance	
7	(ii)	B	P(Hits with exactly one)	M1	For two correct products	FT their tree for all three M marks,
			$= (0.1 \times 0.8 \times 0.95) + (0.9 \times 0.05 \times 0.8) + (0.9 \times 0.95 \times 0.05)$	M1	For all three correct products	provided three terms
			$= 0.076 + 0.036 + 0.04275 = \frac{19}{250} + \frac{9}{250} + \frac{171}{4000}$	M1	For sum of all three correct products	
			$=\frac{619}{4000}=0.15475$	A1	CAO	Allow 0.155 or better
				[4]		
7	(iii)		$P(\text{Hits with exactly one given hits with at least one}) = \frac{P(\text{Hits with exactly one and hits with at least one})}{P(\text{Hits with at least one})}$			If answer to $(B) >$ than answer to (A) then max M1M0A0
			$=\frac{0.15475}{0.18775}$	M1 M1	For numerator FT For denominator FT	Both must be part of a fraction
			= 0.8242	A1 [3]	САО	Allow 0.824 or better or 619/751
7	(iv)		P(Hits three times overall) = ($0.1 \times 0.2 \times 0.2$) + ($0.9 \times 0.95 \times 0.95 \times 0.05 \times 0.2 \times 0.2$)	M1	For $0.1 \times 0.2 \times 0.2$ or 0.004 or $1/250$	FT their tree for all three M marks
				M1	For $0.9 \times 0.95 \times 0.95 \times 0.05 \times 0.05 \times 0.2 \times 0.2$	provided three terms in first product and six in second product. Last three probs must be $0.05 \times 0.2 \times 0.2$ unless they extend their tree
			= 0.004 + 0.0016245	M1* Dep on both prev M1's	For sum of both	With no extras
			= 0.0056245	A1 [4]	CAO	Allow 0.00562 or 0.00563 or 0.0056

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified, deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig.

PLEASE HIGHLIGHT ANY OVER-SPECIFICATION

Please note that there are no G or E marks in scoris, so use B instead

NB PLEASE ANNOTATE EVERY ADDITIONAL ANSWER SHEET EVEN IF FULL MARKS AWARDED OR THE PAGE IS BLANK

Additional notes re Q5 part iii

Comparison with 95% method If 95% seen anywhere then M1 for P($X \le 12$) B1 for 0.8684 M1* for comparison with 95% dep on second B1 A1* for not significant oe E1*

Comparison with 95% CR method If 95% seen anywhere then B1 for 0.9423 or 0.9793 M1 for correct comparison with 95% M1dep for correct CR provided both probs correct then follow mark scheme for CR method

Smallest critical region method: Smallest critical region that 13 could fall into is {13, 14, 15, 16, 17, 18, 19, 20} gets B1 and has size 0.1316 gets B1, This is > 5% gets M1*, A1*, E1* as per scheme NB These marks only awarded if 13 used, not other values.

<u>Use of *k* method with no probabilities quoted:</u> This gets zero marks.

Use of *k* method with one probability quoted: Mark as per scheme

Line diagram method and Bar chart method

No marks unless correct probabilities shown on diagram, then mark as per scheme..