Mark Scheme 4766
 June 2005

Statistics 1 (4766)

Qn	Answer	Mk	Comment
1 (i) (ii)	Mean $=657 / 20=32.85$ $\text { Variance }=\frac{1}{19}\left(22839-\frac{657^{2}}{20}\right)=66.13$ Standard deviation $=8.13$ $32.85+2(8.13)=49.11$ none of the 3 values exceed this so no outliers	B1 cao M1 A1 cao M1 ft A1 ft	Calculation of 49.11
2 (i)	Length of journey	G1 G1 G1	For calculating 38,68,89,103,112,120 Plotting end points Heights inc $(0,0)$
(ii)	Median $=1.7$ miles Lower quartile $=0.8$ miles Upper quartile $=3$ miles Interquartile range $=2.2$ miles The graph exhibits positive skewness	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 ft } \\ & \text { E1 } \end{aligned}$	

3 (i)	$\mathrm{P}(X=4)=\frac{1}{40}(4)(5)=\frac{1}{2} \quad$ (Answer given)	B1	Calculation must be seen
(ii)	$\begin{aligned} & \mathrm{E}(X)=(2+12+36+80) \frac{1}{40} \\ & \text { So } \mathrm{E}(X)=3.25 \end{aligned}$	M1 A1 cao	Sum of rp
	$\begin{aligned} \operatorname{Var}(X) & =(2+24+108+320) \frac{1}{40}-3.25^{2} \\ & =11.35-10.5625 \end{aligned}$	M1 M1 dep	$\begin{aligned} & \text { Sum of } \mathrm{r}^{2} \mathrm{p} \\ & -3.25^{2} \end{aligned}$
	$=0.7875$	A1 cao	
(iii)	$\begin{aligned} \text { Expected number of weeks } & =\frac{6}{40} \times 45 \\ & =6.75 \text { weeks } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	Use of np
4 (i)	Number of choices $=\binom{6}{3}=20$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	For $\binom{6}{3}$
(ii)	$\begin{aligned} \text { Number of ways } & =\binom{6}{3} \times\binom{ 7}{4} \times\binom{ 8}{5} \\ & =20 \times 35 \times 56 \\ & =39200 \end{aligned}$	M1 M1 A1 cao	Correct 3 terms Multiplied
(iii)	Number of ways of choosing 12 questions $=\binom{21}{12}=293930$ Probability of choosing correct number from $\begin{aligned} \text { each section } & =39200 / 293930 \\ & =0.133 \end{aligned}$	M1 M1 ft A1 cao	For $\binom{21}{12}$

(A)	$\mathrm{P}($ First team $)=0.9^{3}=0.729$	A1	
	$\mathrm{P}($ Second team $)=$	M1	1 correct triple
(B)	$0.9 \times 0.9 \times 0.1+0.9 \times 0.1 \times 0.5+0.1 \times 0.9 \times 0.5$	M1	3 correct triples added
	$=0.081+0.045+0.045=0.171$	A1	
(iii)	$\mathrm{P}($ asked to leave $)=1-0.729-0.171$		
	$=0.1$	B1	
(iv)	P (Leave after two games given leaves)		
	$=\frac{0.1 \times 0.5}{0.1}=\frac{1}{2}$	M1 ft A1 cao	Denominator
(v)	P (at least one is asked to leave)	M1 ft	Calc'n of 0.9
	$=1-0.9^{3}=0.271$	M1 A1 cao	$1-()^{3}$
(vi)	P (Pass a total of 7 games)		
	$\begin{aligned} & =P(\text { First, Second, Second })+P(\text { First, First, } \\ & \text { Leave after three games }) \end{aligned}$	M1 M1 ft	Attempts both $0.729(0.171)^{2}$
	$=3 \times 0.729 \times 0.171^{2}+3 \times 0.729^{2} \times 0.05$	M1 ft	0.05(0.729) ${ }^{2}$
	$\begin{aligned} & =0.064+0.080 \\ & =0.144 \end{aligned}$	M1 A1 cao	multiply by 3

7 (i)	$X \sim B\left(15, \frac{1}{6}\right)$		
	$P(X=0)=\left(\frac{5}{6}\right)^{15}=0.065$	M1	$\left(\frac{5}{6}\right)^{15}$
(ii)	$P(X=4)=\binom{15}{4} \times\left(\frac{1}{6}\right)^{4} \times\left(\frac{5}{6}\right)^{11}$	M1 cao	$\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{11}$
	$=0.142$ (or 0.9102-0.7685)	M1	multiply by $\left.\begin{array}{l}15 \\ 4\end{array}\right)$

(iii)	$\begin{aligned} P(X>3) & =1-P(X \leq 3) \\ & =1-0.7685=0.232 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(iv)		B1	Definition of p
(A)	Let $\mathrm{p}=$ probability of a six on any throw $\begin{array}{ll} H_{0}: p=\frac{1}{6} & H_{1}: p<\frac{1}{6} \\ X \sim B\left(15, \frac{1}{6}\right) & \end{array}$	B1	Both hypotheses 0.065
	$P(X=0)=0.065$	M1 M1 dep	0.065 Comparison
	$0.065<0.1$ and so reject H_{0}	E1 dep	
	Conclude that there is sufficient evidence at the 10% level that the dice are biased against sixes.	B1	Both hypotheses
(B)	Let $\mathrm{p}=$ probability of a six on any throw $H_{0}: p=\frac{1}{6} \quad H_{1}: p>\frac{1}{6}$		
	$\begin{aligned} & X \sim B\left(15, \frac{1}{6}\right) \\ & P(X \geq 5)=1-P(X \leq 4)=1-0.910=0.09 \\ & 0.09<0.1 \text { and so reject } H_{0} \end{aligned}$	M1 M1 dep E1 dep	0.09 Comparison
	Conclude that there is sufficient evidence at the 10% level that the dice are biased in favour of sixes.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Contradictory By chance
(v)	Conclusions contradictory. Even if null hypothesis is true, it will be rejected 10% of the time purely by chance. Or other sensible comments.		

Mark Scheme 4766
January 2006

$\begin{aligned} & \hline \text { Q } 1 \\ & \text { (i) } \end{aligned}$	The range $=55-15=40$ The interquartile range $=35-26=9$	$\begin{aligned} & \text { B1 CAO } \\ & \text { B1 CAO } \end{aligned}$	2
(ii)	$\begin{aligned} & 35+1.5 \times 9=48.5 \\ & 26-1.5 \times 9=12.5 \\ & \text { Any value }>48.5 \text { is an outlier (so } 55 \text { will be an } \\ & \text { outlier), } \end{aligned}$	M1 for 48.5 oe M1 for 12.5 oe A1 (FT their IQR in (i))	3
(iii)	One valid comment such as eg: Positively skewed Middle 50\% of data is closely bunched	E1	1
		TOTAL	6
$\begin{aligned} & 2 \\ & \text { (i) } \end{aligned}$	Impossible because if 3 letters are correct, the fourth must be also.	E1	1
(ii)	There is only one way to place letters correctly. There are $4!=24$ ways to arrange 4 letters. OR: $\frac{1}{4} \times \frac{1}{3} \times \frac{1}{2}$ NOTE: ANSWER GIVEN	$\begin{aligned} & \text { E1 } \\ & \text { E1 for } \frac{1}{4} \times \frac{1}{3} \text { B1 for } \mathrm{x} \frac{1}{2} \end{aligned}$	2
(iii)	$\begin{aligned} & \mathrm{E}(X)=1 \times \frac{1}{3}+2 \times \frac{1}{4}+4 \times \frac{1}{24}=1 \\ & E\left(X^{2}\right)=1 \times \frac{1}{3}+4 \times \frac{1}{4}+16 \times \frac{1}{24}=2 \end{aligned}$ So $\operatorname{Var}(X)=2-1^{2}$ $=1$	M1 For $\sum x p$ (at least 2 nonzero terms correct) A1 CAO M1 for $\sum \boldsymbol{x}^{2} \boldsymbol{p}$ (at least 2 nonzero terms correct) M1dep for - their $\mathrm{E}(X)^{2}$ A1 FT their $\mathrm{E}(X)$ provided $\operatorname{Var}(X)>0$	5
		TOTAL	8

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \mathbf{3} \\
(\mathbf{i})
\end{array}
\] \& \begin{tabular}{l}
\[
\begin{aligned}
\& X \sim B(10,0.2) \\
\& \mathrm{P}(X<4)=\mathrm{P}(X \leq 3)=0.8791
\end{aligned}
\] \\
OR attempt to sum \(\mathrm{P}(X=0,1,2,3)\) using \(X \sim\) \(B(10,0.2)\) can score M1, A1
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 for } X \leq 3 \\
\& \text { A1 }
\end{aligned}
\] \& 2 \\
\hline (ii) \& \begin{tabular}{l}
Let \(p=\) the probability that a bowl is imperfect
\[
\begin{aligned}
\& H_{0}: p=0.2 \quad H_{1}: p<0.2 \\
\& \\
\& X \sim B(20,0.2) \\
\& \mathrm{P}(X \leq 3)=0.2061 \\
\& 0.2061>5 \%
\end{aligned}
\] \\
Cannot reject \(H_{0}\) and so insufficient evidence to claim a reduction. \\
OR using critical region method: \\
CR is \(\{0\} \mathrm{B} 1,2\) not in CR M1, A1 as above
\end{tabular} \& \begin{tabular}{l}
B1 Definition of \(p\) B1, B1 \\
B1 for 0.2061 seen M1 for this comparison \\
A1 dep for comment in context
\end{tabular} \& 3

3

\hline \& \& TOTAL \& 8

\hline | 4 |
| :--- |
| (i) | \& The company could increase the mean weight. The company could decrease the standard deviation. \& \[

$$
\begin{aligned}
& \text { B1 CAO } \\
& \text { B1 }
\end{aligned}
$$
\] \&

\hline (ii) \& \[
$$
\begin{aligned}
& \text { Sample mean }=11409 / 25=456.36 \\
& \boldsymbol{S}_{x x}=5206937-\frac{11409^{2}}{25}=325.76 \\
& \text { Sample s.d }=\sqrt{\frac{325.76}{24}}=3.68
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 for $S_{x x}$ |
| A1 | \&

\hline \& \& TOTAL \& 5

\hline | 5 |
| :--- |
| (i) | \& $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.4$ \& B1 CAO \& 1

\hline (ii) \& $\mathrm{P}(\mathrm{C} \mathrm{U} \mathrm{D} \mathrm{)}=0.6$ \& B1 CAO \&

\hline (iii) \& Events B and C are mutually exclusive. \& B1 CAO \&

\hline (iv) \& $$
\begin{aligned}
& P(B)=0.6, P(D)=0.4 \text { and } P(B \cap D)=0.2 \\
& 0.6 \times 0.4 \neq 0.2 \text { (so B and D not independent) }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{B} 1 \text { for } \mathrm{P}(\mathrm{~B} \cap \mathrm{D})=0.2 \text { soi } \\
& \mathrm{E} 1
\end{aligned}
$$
\] \& 2

\hline \& \& TOTAL \& 5

\hline | 6 |
| :--- |
| (i) | \& Number of selections $=\binom{12}{7}=792$ \& M1 for $\binom{12}{7}$ A1 CAO \&

\hline (ii) \& Number of arrangements $=7!=5040$ \& M1 for 7!, A1 CAO \& 2

\hline \& \& TOTAL \& 4

\hline
\end{tabular}

$\begin{aligned} & \hline 7 \\ & \text { (i) } \end{aligned}$	Mean score $=(2 \times 8+3 \times 7+4 \times 6+5+4) / 11=$$6.36$			$\begin{aligned} & \text { M1 for } \sum f x / 11 \\ & \text { A1 CAO } \end{aligned}$	
(ii)			\square Score	G1 Linear sensible scales G1 fds of $8,28,38,26,6$ or $4 k$, $14 k, 19 k, 13 k, 3 k$ for sensible values of k either on script or on graph. G1 (dep on reasonable attempt at fd) Appropriate label for vertical scale eg 'Frequency density', 'frequency per $1 / 2$ unit', 'students per mean GCSE score’. (allow Key)	3
(iii)	Mid point, x 5 5.75 6.25 6.75 7.5 Sample me $\boldsymbol{S}_{x x}=2334$ Sample s.d	f fx 8 40 14 80.5 19 118.75 13 87.75 6 45 60 372$\begin{aligned} & =372 / 60=6.2 \\ & 5-\frac{372^{2}}{60}=28.475 \\ & \sqrt{\frac{28.475}{59}}=0.695 \end{aligned}$	fx^{2} 200 462.875 742.1875 592.3125 337.5 2334.875	B1 mid points B1FT $\sum f x$ and $\sum f x^{2}$ B1 CAO M1 for their $S_{x x}$ A1 CAO	5
(iv)	Prediction So predicte	score $=13 \times 7.4-46$ AS grade would be B	$=50.2$	M1 For $13 \times 7.4-46$ A1 dep on 50.2 (or 50) seen	2
(v)	Prediction So predicte (allow D or Because sc OR (for D) OR (for E)	score $=13 \times 5.5-46$ grade would be D / E roughly halfway fro oser to D than E st E but not up to D b	$=25.5$ $\text { n } 20 \text { to 30, }$ undary	M1 For $13 \times 5.5-46$ A1 dep on 25.5 (or 26 or 25) seen E1 For explanation of conversion - logical statement/argument that supports their choice.	3
(vi)	Mean = 13 Standard d	$\begin{aligned} & .2-46=34.6 \\ & \text { tion }=13 \times 0.695= \end{aligned}$		B1 FT their 6.2 M1 for 13 x their 0.695 A1 FT	3
				TOTAL	18

$\begin{aligned} & \hline \mathbf{8} \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \mathrm{P}(\text { all jam }) \\ & =\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} \\ & =\frac{1}{22}=0.04545 \end{aligned}$	M1 $5 \times 4 \times 3$ or $\binom{5}{3}$ in numerator M1 $12 \times 11 \times 10$ or $\binom{12}{3}$ in denominator A1 CAO	3
(ii)	$\begin{aligned} & \text { P(all same) } \\ & =\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}+\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}+\frac{3}{12} \times \frac{2}{11} \times \frac{1}{10} \\ & =\frac{1}{22}+\frac{1}{55}+\frac{1}{220}=\frac{3}{44}=0.06818 \end{aligned}$	M1 Sum of 3 reasonable triples or combinations M1 Triples or combinations correct A1 CAO	3
(iii)	$\begin{aligned} & \text { P(all different) } \\ & =6 \times \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} \\ & =\frac{3}{11}=0.2727 \end{aligned}$	M1 5,4,3 M1 $6 \times$ three fractions or $\binom{12}{3}$ denom. A1 CAO	3
(iv)	$P(\text { all jam given all same })=\frac{1}{22} / \frac{3}{44}=\frac{2}{3}$	M1 Their (i) in numerator M1 Their (ii) in denominator A1 CAO	3
(v)	P(all jam exactly twice) $=\binom{5}{2} \times\left(\frac{1}{22}\right)^{2} \times\left(\frac{21}{22}\right)^{3}=0.01797$	M1 for $\binom{5}{2} \times \ldots$ M1 for their $p^{2} q^{3}$ A1 CAO	3
(vi)	$\begin{aligned} & \text { P(all jam at least once) } \\ & =1-\left(\frac{21}{22}\right)^{5}=0.2075 \end{aligned}$	M1 for their q^{5} M1 indep for $1-5^{\text {th }}$ power A1 CAO	3
		TOTAL	18

Mark Scheme 4766 June 2006

Q1			
(i)		G1 Labelled linear	
scales			

Q3 (i)	$\begin{aligned} & \mathrm{P}(X=1)=7 k, \mathrm{P}(X=2)=12 k, \mathrm{P}(X=3)=15 k, \mathrm{P}(X=4)=16 k \\ & 50 k=1 \text { so } k=1 / 50 \end{aligned}$	M1 for addition of four multiples of k A1 ANSWER GIVEN	2
(ii)	$\begin{aligned} & \mathrm{E}(X)=1 \times 7 k+2 \times 12 k+3 \times 15 k+4 \times 16 k=140 k=2.8 \\ & \text { OR } \mathrm{E}(X)=1 \times{ }^{7} / 50+2 \times{ }^{12} / 50+3 \times 15 / 50+4 \times{ }^{16} / 50={ }^{140} / 50= \\ & 2.8 \mathrm{oe} \end{aligned} \begin{aligned} & \operatorname{Var}(X)=1 \times 7 k+4 \times 12 k+9 \times 15 k+16 \times 16 k-7.84=1.08 \\ & \text { OR } \operatorname{Var}(X)=1 \times 7 / 50+4 \times 12 / 50+9 \times{ }^{15} / 50+16 \times 16 / 50-7.84 \\ & \quad=8.92-7.84=1.08 \end{aligned}$	M1 for $\operatorname{\Sigma xp}$ (at least 3 terms correct) A1 CAO M1 $\Sigma x^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(X$ $)^{2}$ NB provided $\operatorname{Var}(X)$ >0 A1 FT their $\mathrm{E}(X)$	5
		TOTAL	7
Q4 (i)	$4 \times 5 \times 3=60$	M1 for $4 \times 5 \times 3$ A1 CAO	2
(ii)	(A) $\binom{4}{2}=6$ (B) $\binom{4}{2}\binom{5}{2}\binom{3}{2}=180$	B1 ANSWER GIVEN B1 CAO	2
(iii)	(A) $1 / 5$ (B) $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}=\frac{2}{5}$	B1 CAO M1 for $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}$ A1	3
		TOTAL	7
Q5 (i)	$\mathrm{P}(X=2)=\binom{3}{2} \times 0.87^{2} \times 0.13=0.2952$	M1 $0.87^{2} \times 0.13$ M1 $\binom{3}{2} \times p^{2} q$ with $p+q=1$ A1 CAO	3
(ii)	In 50 throws expect $50(0.2952)=14.76$ times	B1 FT	1
(iii)	P (two 20's twice) $=\binom{4}{2} \times 0.2952^{2} \times 0.7048^{2}=0.2597$	M1 $0.2952^{2} \times 0.7048^{2}$ A1 FT their 0.2952	2
		TOTAL	6

Q6 (i)		G1 for left hand set of branches fully correct including labels and probabilities G1 for right hand set of branches fully correct	2
(ii)	$\mathrm{P}($ test is positive $)=(0.9)(0.95)+(0.1)(0.2)=0.875$	M1 Two correct pairs added A1 CAO	2
(iii)	$\mathrm{P}($ test is correct $)=(0.9)(0.95)+(0.1)(0.8)=0.935$	M1 Two correct pairs added A1 CAO	2
(iv)	$\begin{aligned} & \text { P (Genuine\|Positive) } \\ & =0.855 / 0.875 \\ & =0.977 \end{aligned}$	M1 Numerator M1 Denominator A1 CAO	3
(v)	$\mathrm{P}($ Fake Negative $)=0.08 / 0.125=0.64$	M1 Numerator M1 Denominator A1 CAO	3
(vi)	EITHER: A positive test means that the painting is almost certain to be genuine so no need for a further test. However, more than a third of those paintings with a negative result are genuine so a further test is needed. NOTE: Allow sensible alternative answers	E1FT E1FT	2
(vii)	$\begin{aligned} P \text { (all } 3 \text { genuine }) & =(0.9 \times 0.05 \times 0.96)^{3} \\ & =(0.045 \times 0.96)^{3} \\ & =(0.0432)^{3} \\ & =0.0000806 \end{aligned}$	M1 for 0.9×0.05 (=0.045) M1 for complete correct triple product M1indep for cubing A1 CAO	4
		TOTAL	18

Q7 (i)	$x \sim \mathrm{~B}(20,0.1)$ (A) $\quad \mathrm{P}(\boldsymbol{X}=1)=\binom{20}{1} \times 0.1 \times 0.9^{19}=0.2702$ OR from tables $\quad 0.3917-0.1216=0.2701$ (B) $\mathrm{P}(\boldsymbol{X} \geq 1)=1-0.1216=0.8784$	M1 0.1×0.9^{19} M1 $\binom{20}{1} \times p q^{19}$ A1 CAO OR: M2 for 0.3917 0.1216 A1 CAO M1 $\mathrm{P}(X=0)$ provided that $P(X \geq 1)=1-P(X \leq 1)$ not seen M1 1- $\mathrm{P}(\mathrm{X}=0)$ A1 CAO	3 3
(ii)	EITHER: $1-0.9^{n} \geq 0.8$ $0.9^{n} \leq 0.2$ Minimum $n=16$ OR (using trial and improvement): Trial with 0.9^{15} or 0.9^{16} or 0.9^{17} $1-0.9^{15}=0.7941<0.8$ and $1-0.9^{16}=0.8147>0.8$ Minimum $n=16$ NOTE: $n=16$ unsupported scores SC1 only	M1 for 0.9^{n} M1 for inequality A1 CAO M1 M1 A1 CAO	3
(iii)	(A) Let $p=$ probability of a randomly selected rock containing a fossil (for population) $\begin{aligned} & \mathrm{H}_{0}: p=0.1 \\ & \mathrm{H}_{1}: p<0.1 \end{aligned}$ $\begin{aligned} & (\boldsymbol{B}) \quad \text { Let } X \sim \mathrm{~B}(30,0.1) \\ & \mathrm{P}(X \leq 0)=0.0424<5 \% \\ & \mathrm{P}(X \leq 1)=0.0424+0.1413=0.1837>5 \% \end{aligned}$ So critical region consists only of 0 . (C) 2 does not lie in the critical region. So there is insufficient evidence to reject the null hypothesis and we conclude that it seems that 10% of rocks in this area contain fossils.	B1 for definition of p B 1 for H_{0} B1 for H_{1} M1 for attempt to find $\mathrm{P}(X \leq 0)$ or $\mathrm{P}(X \leq 1)$ using binomial M1 for both attempted M1 for comparison of either of the above with 5\% A1 for critical region dep on both comparisons (NB Answer given) M1 for comparison A1 for conclusion in context	3 4 4 2
		TOTAL	18

Mark Scheme 4766 January 2007

GENERAL INSTRUCTIONS

Marks in the mark scheme are explicitly designated as $\mathbf{M}, \mathbf{A}, \mathbf{B}, \mathbf{E}$ or \mathbf{G}.
M marks ("method") are for an attempt to use a correct method (not merely for stating the method).
A marks ("accuracy") are for accurate answers and can only be earned if corresponding M mark(s) have been earned. Candidates are expected to give answers to a sensible level of accuracy in the context of the problem in hand. The level of accuracy quoted in the mark scheme will sometimes deliberately be greater than is required, when this facilitates marking.

B marks are independent of all others. They are usually awarded for a single correct answer.
E marks ("explanation") are for explanation and/or interpretation. These will frequently be sub divisible depending on the thoroughness of the candidate's answer.

G marks ("graph") are for completing a graph or diagram correctly.

- Insert part marks in right-hand margin in line with the mark scheme. For fully correct parts tick the answer. For partially complete parts indicate clearly in the body of the script where the marks have been gained or lost, in line with the mark scheme.
- Please indicate incorrect working by ringing or underlining as appropriate.
- Insert total in right-hand margin, ringed, at end of question, in line with the mark scheme.
- Numerical answers which are not exact should be given to at least the accuracy shown. Approximate answers to a greater accuracy may be condoned.
- Probabilities should be given as fractions, decimals or percentages.
- FOLLOW-THROUGH MARKING SHOULD NORMALLY BE USED WHEREVER POSSIBLE. There will, however, be an occasional designation of 'c.a.o.' for "correct answer only".
- Full credit MUST be given when correct alternative methods of solution are used. If errors occur in such methods, the marks awarded should correspond as nearly as possible to equivalent work using the method in the mark scheme.
- The following notation should be used where applicable:

FT	Follow-through marking
BOD	Benefit of doubt
ISW	Ignore subsequent working

$\begin{aligned} & \mathbf{Q} \\ & \mathbf{1} \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Mean }=127.6 / 13=9.8 \\ & \text { Median }=8.6 \\ & \text { Midrange }=14.5 \\ & \hline \end{aligned}$	M1 for 127.6/13 soi A1 CAO B1 CAO B1 CAO	4
(ii)	Mean slightly inflated due to the outlier Median good since it is not affected by the outlier Midrange poor as it is highly inflated due to the outlier	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3
		TOTAL	7
$\begin{aligned} & \hline \mathbf{Q} \\ & 2 \\ & \text { (i) } \end{aligned}$		G1 labelled linear scales on both axes G1 heights	2
(ii)	$\begin{aligned} & \text { Mean }=\frac{99}{50}=1.98 \\ & S_{x x}=315-\frac{99^{2}}{50} \quad(=118.98) \\ & r m s d=\sqrt{\frac{118.98}{50}}=1.54 \end{aligned}$ NB full marks for correct results from recommended method which is use of calculator functions	B1 for mean M1 for attempt at $S_{x x}$ A1 CAO	3
(iii)	New mean $=30-1.98=28.02$ New rmsd $=1.54$ (unchanged)	B1 FT their mean B1 FT their rmsd	2
		TOTAL	7
$\begin{gathered} \hline \mathbf{Q} \\ \mathbf{3} \\ \text { (i) } \end{gathered}$	 time freq width f dens $0-$ 34 5 6.8 $5-$ 153 5 30.6 $10-$ 188 10 18.8 $20-$ 73 10 7.3 $30-$ 27 10 2.7 $40-$ 5 20 0.25	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 5 mins. G1 linear scales on both axes and label G1 width of bars G1 height of bars	5
(ii)	Positive skewness	B1 CAO (indep)	1
		TOTAL	6

$\begin{aligned} & \mathbf{Q} \\ & \mathbf{6} \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Median }=3370 \\ & Q_{1}=3050 \quad Q_{3}=3700 \\ & \text { Inter-quartile range }=3700-3050=650 \end{aligned}$	B1 B1 for Q_{3} or Q_{1} B1 for IQR	3
(ii)	Lower limit 3050-1.5 $\times 650=2075$ Upper limit $3700+1.5 \times 650=4675$ Approx 40 babies below 2075 and 5 above 4675 so total 45	B1 B1 M1 (for either) A1	4
(iii)	Decision based on convincing argument: eg 'no, because there is nothing to suggest that they are not genuine data items and these data may influence health care provision'	E2 for convincing argument	2
(iv)	All babies below 2600 grams in weight	B2 CAO	2
(v)	(A) $\begin{aligned} & X \sim \mathrm{~B}(17,0.12) \\ & \mathrm{P}(X=2)=\binom{17}{2} \times 0.12^{2} \times 0.88^{15}=0.2878 \end{aligned}$ $\text { (B) } \quad \begin{aligned} & \mathrm{P}(X>2) \\ & =1-\left(0.2878+\binom{17}{1} \times 0.12 \times 0.88^{16}+0.88^{17}\right) \\ & =1-(0.2878+0.2638+0.1138)=0.335 \end{aligned}$	M1 $\binom{17}{2} \times p^{2} \times q^{15}$ M1 indep $0.12^{2} \times 0.88^{15}$ A1 CAO M1 for $\mathrm{P}(X=1)+\mathrm{P}(X=0)$ M1 for $1-\mathrm{P}(X \leq 2)$ A1 CAO	3
(vi)	Expected number of occasions is 33.5	B1 FT	1
		TOTAL	18

$\begin{aligned} & Q \\ & \mathbf{Q} \\ & \text { (i) } \end{aligned}$	(A) $\quad \mathrm{P}$ (both) $=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$ (B) $\quad \mathrm{P}($ one $)=2 \times \frac{2}{3} \times \frac{1}{3}=\frac{4}{9}$ (C) $\quad \mathrm{P}$ (neither) $=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$	B1 CAO B1 CAO B1 CAO	3
(ii)	Independence necessary because otherwise, the probability of one seed germinating would change according to whether or not the other one germinates. May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. NB Allow valid alternatives	E1 E1	2
(iii)	$\begin{aligned} & \text { Expected number }=2 \times \frac{2}{3}=\frac{4}{3}(=1.33) \\ & E\left(X^{2}\right)=0 \times \frac{1}{9}+1 \times \frac{4}{9}+4 \times \frac{4}{9}=\frac{20}{9} \\ & \operatorname{Var}(X)=\frac{20}{9}-\left(\frac{4}{3}\right)^{2}=\frac{4}{9}=0.444 \end{aligned}$ NB use of npq scores M1 for product, A1CAO	B1 FT M1 for $E\left(X^{2}\right)$ A1 CAO	3
(iv)	Expect $200 \times \frac{8}{9}=177.8$ plants So expect $0.85 \times 177.8=151$ onions	M1 for $200 \times \frac{8}{9}$ M1 dep for $\times 0.85$ A1 CAO	3
(v)	Let $X \sim \mathrm{~B}(18, p)$ Let $p=$ probability of germination (for population) $\mathrm{H}_{0}: p=0.90$ $\mathrm{H}_{1}: p<0.90$ $\mathrm{P}(X \leq 14)=0.0982>5 \%$ So not enough evidence to reject H_{0} Conclude that there is not enough evidence to indicate that the germination rate is below 90%. Note: use of critical region method scores M1 for region $\{0,1,2, \ldots, 13\}$ M1 for 14 does not lie in critical region then A1 E1 as per scheme	B1 for definition of p B1 for H_{0} B1 for H_{1} M1 for probability M1 dep for comparison A1 E1 for conclusion in context	7
		TOTAL	18

Mark Scheme 4766 June 2007

Q5 (i)	$11^{\text {th }}$ value is $4,12^{\text {th }}$ value is 4 so median is 4 Interquartile range $=5-2=3$	B1 M1 for either quartile A1 CAO	3
(ii)	No, not valid any two valid reasons such as : - the sample is only for two years, which may not be representative - the data only refer to the local area, not the whole of Britain - even if decreasing it may have nothing to do with global warming - more days with rain does not imply more total rainfall - a five year timescale may not be enough to show a long term trend	E1 E1	3
		TOTAL	6
Q6 (i)	$\begin{aligned} & \text { Either } \mathrm{P} \text { (all } 4 \text { correct })=\frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}=\frac{1}{35} \\ & \text { or } \mathrm{P}(\text { all } 4 \text { correct })=\frac{1}{{ }^{7} \boldsymbol{C}_{4}}=\frac{1}{35} \end{aligned}$	M1 for fractions, or ${ }^{7} \mathrm{C}_{4}$ seen A1 NB answer given	2
(ii)	$\begin{aligned} & \mathrm{E}(X)=1 \times \frac{4}{35}+2 \times \frac{18}{35}+3 \times \frac{12}{35}+4 \times \frac{1}{35}=\frac{80}{35}=2 \frac{2}{7}=2.29 \\ & \mathrm{E}\left(X^{2}\right)=1 \times \frac{4}{35}+4 \times \frac{18}{35}+9 \times \frac{12}{35}+16 \times \frac{1}{35}=\frac{200}{35}=5.714 \\ & \operatorname{Var}(X)=\frac{200}{35}-\left(\frac{80}{35}\right)^{2}=\frac{24}{49}=0.490 \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 for $\underset{\sim}{r} r p$ (at least 3 terms correct) A1 CAO M1 for $\Sigma x^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(X)^{2}$ A1 FT their $\mathrm{E}(X)$ provided $\operatorname{Var}(X)>0$	5
		TOTAL	7

	Section B		
$\begin{aligned} & \text { Q7 } \\ & \text { (i) } \end{aligned}$		G1 probabilities of result G1 probabilities of disease G1 probabilities of clear G1 labels	4
(ii)	$\begin{gathered} \mathrm{P}(\text { negative and clear })=0.91 \times 0.99 \\ \quad=0.9009 \end{gathered}$	M1 for their 0.91×0.99 A1 CAO	2
(iii)	$\begin{aligned} \mathrm{P}(\text { has disease }) & =0.03 \times 0.95+0.06 \times 0.10+0.91 \times 0.01 \\ & =0.0285+0.006+0.0091 \\ & =0.0436 \end{aligned}$	M1 three products M1dep sum of three products A1 FT their tree	3
(iv)	P (negative \| has disease) $=\frac{\mathrm{P}(\text { negative and has disease })}{\mathrm{P}(\text { has disease })}=\frac{0.0091}{0.0436}=0.2087$	M1 for their 0.01×0.91 or 0.0091 on its own or as numerator M1 indep for their 0.0436 as denominator A1 FT their tree	3
(v)	Thus the test result is not very reliable. A relatively large proportion of people who have the disease will test negative.	E1 FT for idea of 'not reliable' or 'could be improved', etc E1 FT	2
(vi)	P (negative or doubtful and declared clear) $\begin{aligned} & =0.91+0.06 \times 0.10 \times 0.02+0.06 \times 0.90 \times 1 \\ & =0.91+0.00012+0.054=0.96412 \end{aligned}$	M1 for their 0.91 + M1 for either triplet M1 for second triplet A1 CAO	4
		TOTAL	18

$\begin{aligned} & \hline \text { Q8 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} X \sim \mathrm{~B}(17,0.2) & \\ \mathrm{P}(X \geq 4)= & 1-\mathrm{P}(X \leq 3) \\ & =1-0.5489=0.4511 \end{aligned}$	B1 for 0.5489 M1 for 1 - their 0.5489 A1 CAO	3
(ii)	$\mathrm{E}(\mathrm{X})=n p=17 \times 0.2=3.4$	M1 for product A1 CAO	2
(iii)	$\begin{aligned} & \mathrm{P}(X=2)=0.3096-0.1182=0.1914 \\ & \mathrm{P}(X=3)=0.5489-0.3096=0.2393 \\ & \mathrm{P}(X=4)=0.7582-0.5489=0.2093 \end{aligned}$ So 3 applicants is most likely	B1 for 0.2393 B1 for 0.2093 A1 CAO dep on both B1s	3
(iv)	(A) Let $p=$ probability of a randomly selected maths graduate applicant being successful (for population) $\mathrm{H}_{0}: p=0.2$ $\mathrm{H}_{1}: p>0.2$ (B) $\quad \mathrm{H}_{1}$ has this form as the suggestion is that mathematics graduates are more likely to be successful.	B1 for definition of p in context B1 for H_{0} B1 for H_{1} E1	4
(v)	$\begin{aligned} & \text { Let } X \sim \mathrm{~B}(17,0.2) \\ & \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.8943=0.1057>5 \% \\ & \mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)=1-0.9623=0.0377<5 \% \end{aligned}$ So critical region is $\{7,8,9,10,11,12,13,14,15,16,17\}$	B1 for 0.1057 B1 for 0.0377 M1 for at least one comparison with 5\% A1 CAO for critical region dep on M1 and at least one B1	4
(vi)	Because $\mathrm{P}(X \geq 6)=0.1057>10 \%$ Either: comment that 6 is still outside the critical region Or comparison $\mathrm{P}(X \geq 7)=0.0377<10 \%$	$\begin{aligned} & \hline \text { E1 } \\ & \text { E1 } \end{aligned}$	2
		TOTAL	18

4766
 Statistics 1

$\begin{aligned} & \text { Q1 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \hline \text { Mode }=7 \\ & \text { Median = } 12.5 \end{aligned}$	$\begin{aligned} & \hline \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$	2
(ii)	Positive or positively skewed	E1	1
(iii)	(A) Median (B) There is a large outlier or possible outlier of 58 / figure of 58 . Just 'outlier' on its own without reference to either 58 or large scores E0 Accept the large outlier affects the mean (more) E1	E1 cao E1indep	2
(iv)	There are $14.75 \times 28=413$ messages So total cost $=413 \times 10$ pence $=£ 41.30$	M1 for 14.75×28 but 413 can also imply the mark A1cao	2
		TOTAL	7
$\begin{aligned} & \text { Q2 } \\ & \text { (i) } \end{aligned}$	$\binom{4}{3} \times 3!=4 \times 6=24$ codes or ${ }^{4} P_{3}=24\left(\mathrm{M} 2\right.$ for $\left.{ }^{4} \mathrm{P}_{3}\right)$ Or $\quad 4 \times 3 \times 2=24$	M1 for 4 M1 for $\times 6$ A1	3
(ii)	$4^{3}=64$ codes	$\begin{array}{\|l} \hline \text { M1 for } 4^{3} \\ \text { A1 cao } \\ \hline \end{array}$	2
		TOTAL	5
$\begin{aligned} & \text { Q3 } \\ & \text { (i) } \end{aligned}$	Probability $=0.3 \times 0.8=0.24$	M1 for 0.8 from (1-0.2) A1	2
(ii)	$\begin{aligned} & \text { Either: } \begin{aligned} & \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\ &=0.3+0.2-0.3 \times 0.2 \\ &=0.5-0.06=0.44 \\ & \text { Or: } \mathrm{P}(A \cup B)= 0.7 \times 0.2+0.3 \times 0.8+0.3 \times 0.2 \\ &=0.14+0.24+0.06=0.44 \\ & \text { Or: } \mathrm{P}(A \cup B)= 1-\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right) \\ &=1-0.7 \times 0.8=1-0.56=0.44 \end{aligned} \end{aligned}$	M1 for adding 0.3 and 0.2 M1 for subtraction of (0.3×0.2) A1 cao M1 either of first terms M1 for last term A1 M1 for 0.7×0.8 or 0.56 M1 for complete method as seen A1	3
(iii)	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.06}{0.44}=\frac{6}{44}=0.136$	M1 for numerator of their 0.06 only M1 for 'their 0.44 ' in denominator A1 FT (must be valid p)	3
		TOTAL	8

Q4 (i)	$E(X)=1 \times 0.2+2 \times 0.16+3 \times 0.128+4 \times 0.512=2.952$ Division by 4 or other spurious value at end loses A mark $E\left(X^{2}\right)=1 \times 0.2+4 \times 0.16+9 \times 0.128+16 \times 0.512=10.184$ $\operatorname{Var}(X)=10.184-2.952^{2}=1.47 \text { (to } 3 \text { s.f.) }$	M1 for $\Sigma r p$ (at least 3 terms correct) A1 cao M1 for $\Sigma x^{2} p$ at least 3 terms correct M1 for $E\left(X^{2}\right)-E(X)^{2}$ Provided ans >0 A1 FT their $\mathrm{E}(X)$ but not a wrong $E\left(X^{2}\right)$	5
(ii)	Expected cost $=2.952 \times £ 45000=£ 133000$ (3sf)	B1 FT (no extra multiples / divisors introduced at this stage)	1
(iii)		G1 labelled linear scales G1 height of lines	2
		TOTAL	8
Q5 (i)	Impossible because the competition would have finished as soon as Sophie had won the first 2 matches	E1	1
(ii)	SS, JSS, JSJSS	B1, B1, B1 (-1 each error or omission)	3
(iii)	$\begin{aligned} & 0.7^{2}+0.3 \times 0.7^{2}+0.7 \times 0.3 \times 0.7^{2}=0.7399 \text { or } 0.74(0) \\ & \{0.49+0.147+0.1029=0.7399\} \end{aligned}$	M1 for any correct term M1 for any other correct term M1 for sum of all three correct terms A1 cao	4
		TOTAL	8

$\begin{aligned} & \text { Q7 } \\ & \text { (i) } \end{aligned}$	$x \sim \mathrm{~B}(12,0.05)$ (A) $\mathrm{P}(\boldsymbol{X}=1)=\binom{12}{1} \times 0.05 \times 0.95^{11}=0.3413$ OR from tables $\quad 0.8816-0.5404=0.3412$ (B) $\mathrm{P}(\boldsymbol{X} \geq 2)=1-0.8816=0.1184$ (C) Expected number $\mathrm{E}(\boldsymbol{X})=\boldsymbol{n} \boldsymbol{p}=12 \times 0.05=0.6$	M1 0.05×0.95^{11} M1 $\binom{12}{1} \times p q^{11}(p+q)=$ 1 A1 cao OR: M1 for 0.8816 seen and M1 for subtraction of 0.5404 A1 cao M1 for $1-P(X \leq 1)$ A1 cao M1 for 12×0.05 A1 cao (= 0.6 seen)	3 2 2
(ii)	Either: $1-0.95^{n} \leq 1 / 3$ $0.95^{n} \geq 2 / 3$ $n \leq \log 2 / 3 / \log 0.95$, so $n \leq 7.90$ Maximum $n=7$ Or: (using tables with $p=0.05$): $n=7$ leads to $\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)=1-0.6983=0.3017(<1 / 3)$ or 0.6983 (>2/3) $n=8$ leads to $\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)=1-0.6634=0.3366(>1 / 3)$ or $0.6634(<2 / 3)$ Maximum $n=7$ (total accuracy needed for tables) Or: (using trial and improvement): $1-0.95^{7}=0.3017(<1 / 3) \text { or } 0.95^{7}=0.6983(>2 / 3)$ $1-0.95^{8}=0.3366(>1 / 3) \text { or } 0.96^{8}=0.6634(<2 / 3)$ Maximum $n=7$ (3 sf accuracy for calculations) NOTE: $n=7$ unsupported scores SC1 only Let $X \sim \mathrm{~B}(60, p)$ Let $p=$ probability of a bag being faulty $\mathrm{H}_{0}: p=0.05$ $\mathrm{H}_{1}: p<0.05$ $P(X \leq 1)=0.95^{60}+60 \times 0.05 \times 0.95^{59}=0.1916>10 \%$ So not enough evidence to reject H_{0} Conclude that there is not enough evidence to indicate that the new process reduces the failure rate or scientist incorrect/ wrong.	M1 for equation in n M1 for use of logs A1 cao M1indep M1indep A1 cao dep on both M's M1indep (as above) M1indep (as above) A1 cao dep on both M's B1 for definition of p B1 for H_{0} B1 for H_{1} M1 A1 for probability M1 for comparison A1 E1	3 8
		TOTAL	18

4766 Statistics 1

$\begin{aligned} & \text { Q1 } \\ & \text { (i) } \end{aligned}$	Mean $=7.35$ (or better) Standard deviation: 3.69-3.70 (awfw) Allow $\mathrm{s}^{2}=13.62$ to 13.68 Allow rmsd $=3.64-3.66$ (awfw) After B0, B0 scored then if at least 4 correct mid-points seen or used. $\{1.5,4,6,8.5,15\}$ Attempt of their mean $=\frac{\sum f x}{44}$, with $301 \leq \mathrm{fx} \leq 346$ and fx strictly from mid-points not class widths or top/lower boundaries.	B2cao $\sum f x=323.5$ B2cao $\sum f x^{2}=2964.25$ (B1) for variance s.o.i.o (B1) for rmsd (B1) mid-points (B1) $6.84 \leq$ mean ≤ 7.86	4
(ii)	Upper limit $=7.35+2 \times 3.69=14.73$ or 'their sensible mean' $+2 \times$ 'their sensible s.d.' So there could be one or more outliers	$\begin{aligned} & \text { M1 (with s.d. < mean) } \\ & \text { E1dep on B2, B2 } \\ & \text { earned and comment } \end{aligned}$	2
		TOTAL	6
$\begin{aligned} & \text { Q2 } \\ & \text { (i) } \end{aligned}$	$P(W) \times P(C)=0.20 \times 0.17=0.034$ $P(W \cap C)=0.06$ (given in the question) Not equal so not independent (Allow $0.20 \times 0.17 \neq 0.06$ or $\neq \mathrm{p}(\mathrm{W} \cap \mathrm{C})$ so not independent).	M1 for multiplying or 0.034 seen A1 (numerical justification needed)	2
(ii)	The last two G marks are independent of the labels	G1 for two overlapping circles labelled G1 for 0.06 and either 0.14 or 0.11 in the correct places G1 for all 4 correct probs in the correct places (including the 0.69) NB No credit for Karnaugh maps here	3
(iii)	$\mathrm{P}(W \mid C)=\frac{\mathrm{P}(W \cap C)}{\mathrm{P}(\mathrm{C})}=\frac{0.06}{0.17}=\frac{6}{17}=0.353(\text { awrt } 0.35)$	M1 for 0.06 / 0.17 A1 cao	2

(iv)	Children are more likely than adults to be able to speak Welsh or 'proportionally more children speak Welsh than adults' Do not accept: 'more Welsh children speak Welsh than adults'	E1FT Once the correct idea is seen, apply ISW	1
		TOTAL	8
$\begin{aligned} & \hline \text { Q3 } \\ & \text { (i) } \end{aligned}$	(A) $0.5+0.35+\boldsymbol{p}+\boldsymbol{q}=1$ $\text { so } \boldsymbol{p}+\boldsymbol{q}=0.15$ (B) $0 \times 0.5+1 \times 0.35+2 \boldsymbol{p}+3 \boldsymbol{q}=0.67$ $\text { so } 2 \boldsymbol{p}+3 \boldsymbol{q}=0.32$ (C) from above $2 \boldsymbol{p}+2 \boldsymbol{q}=0.30$ $\text { so } \boldsymbol{q}=0.02, \boldsymbol{p}=0.13$	B1 $p+q$ in a correct equation before they reach $p+q=0.15$ B1 $2 p+3 q$ in a correct equation before they reach $2 p+3 q=0.32$ (B1) for any 1 correct answer B2 for both correct answers	1 1 2
(ii)	$\begin{aligned} & E\left(X^{2}\right)=0 \times 0.5+1 \times 0.35+4 \times 0.13+9 \times 0.02=1.05 \\ & \operatorname{Var}(X)=\text { 'their } 1.05 '-0.67^{2}=0.6011(\text { awrt } 0.6) \end{aligned}$ (M1, M1 can be earned with their p^{+}and q^{+}but not A mark)	M1 $\Sigma x^{2} p$ (at least 2 non zero terms correct) M1dep for (-0.67^{2}), provided $\operatorname{Var}(X)>0$ A1 cao (No n or n-1 divisors)	3
		TOTAL	7
Q4 (i)	$X \sim \mathrm{~B}(8,0.05)$ (A) $\mathrm{P}(\boldsymbol{X}=0)=0.95^{8}=0.6634 \quad 0.663$ or better Or using tables $\mathrm{P}(\boldsymbol{X}=0)=0.6634$ (B) $\mathrm{P}(\boldsymbol{X}=1)=\binom{8}{1} \times 0.05 \times 0.95^{7}=0.2793$ $\mathrm{P}(X>1)=1-(0.6634+0.2793)=0.0573$ Or using tables $\mathrm{P}(X>1)=1-0.9428=0.0572$	M1 $0.95^{8} \mathrm{~A} 1 \mathrm{CAO}$ Or B2 (tables) M1 for $\mathrm{P}(X=1)$ (allow 0.28 or better) M1 for $1-\mathrm{P}(X \leq 1)$ must have both probabilities A1cao (0.0572 0.0573) M1 for $\mathrm{P}(X \leq 1) 0.9428$ M1 for $1-\mathrm{P}(X \leq 1)$ A1 cao (must end in...2)	2 3
(ii)	Expected number of days $=250 \times 0.0572=14.3$ awrt	M1 for $250 \times \operatorname{prob}(\mathrm{B})$ A1 FT but no rounding at end	2
		TOTAL	7

	Section B		
$\begin{aligned} & \text { Q6 } \\ & \text { (i) } \end{aligned}$	(B) Either: All 5 case $\mathrm{P}($ at least one England $)=$ $\begin{aligned} & (0.79 \times 0.20)+(0.79 \times 0.01)+(0.20 \times 0.79)+(0.01 \times 0.79)+ \\ & (0.79 \times 0.79) \\ & =0.158+0.0079+0.158+0.0079+0.6241=0.9559 \end{aligned}$ Or $\mathrm{P}(\text { at least one England) }=1-\mathrm{P} \text { (neither England) }$ $=1-(0.21 \times 0.21)=1-0.0441=0.9559$ or listing all $\begin{aligned} & =1-\{(0.2 \times 0.2)+(0.2 \times 0.01)+(0.01 \times 0.20)+(0.01 x \\ & 0.01)\} \\ & =1-\left({ }^{* *}\right) \\ & =1-\{0.04+0.002+0.002+0.0001) \\ & =1-0.0441 \\ & =0.9559 \end{aligned}$ Or: All 3 case P(at least one England) $=$ $=0.79 \times 0.21+0.21 \times 0.79+0.79^{2}$ $=0.1659+0.1659+0.6241$ $=0.9559$ (C)Either $0.79 \times 0.79+0.79 \times 0.2+0.2 \times 0.79+0.2 \times 0.2=0.9801$ Or $0.99 \times 0.99=0.9801$ Or $\begin{aligned} & \begin{array}{l} 1-\{0.79 \times 0.01+0.2 \times 0.01+0.01 \times 0.79+0.01 \times 0.02+ \\ \left.0.01^{2}\right\} \\ = \\ \quad= \\ \quad \end{array}=0.9801 \end{aligned}$	M1 for multiplying A1cao M1 for any correct term (3case or 5case) M1 for correct sum of all 3 (or of all 5) with no extras A1cao (condone 0.96 www) Or M1 for 0.21×0.21 or for (**) fully enumerated or 0.0441 seen M1dep for 1 - ($1^{\text {st }}$ part) A1cao See above for 3 case M1 for sight of all 4 correct terms summed A1 cao (condone 0.98 www) or M1 for 0.99×0.99 A1cao Or M1 for everything 1 - \{.....\} A1cao	2
(ii)	$\begin{aligned} & \begin{array}{l} \mathrm{P} \text { (both the rest of the UK \| neither overseas) } \\ \quad=\frac{\mathrm{P}(\text { the rest of the UK and neither overseas })}{\mathrm{P}(\text { neither overseas })} \\ \quad=\frac{0.04}{0.9801}=0.0408 \end{array} \\ & \left\{\text { Watch for: } \frac{\operatorname{answer}(A)}{\operatorname{answer}(C)} \text { as evidence of method }(\mathrm{p}<1)\right\} \end{aligned}$	M1 for numerator of 0.04 or 'their answer to (i)(A)' M1 for denominator of 0.9801 or 'their answer to (i) (C)' A1 FT $(0<p<1) 0.041$ at least	3

(iii)	(A) $\begin{aligned} \text { Probability } & =1-0.79^{5} \\ & =1-0.3077 \\ & =0.6923 \text { (accept awrt } 0.69 \text {) } \end{aligned}$ see additional notes for alternative solution (B) $1-0.79^{n}>0.9$ EITHER: $1-0.79^{n}>0.9$ or $0.79^{n}<0.1$ (condone $=$ and \geq throughout) but not reverse inequality $\mathrm{n}>\frac{\log 0.1}{\log 0.79}$, so $\mathrm{n}>9.768 \ldots$ Minimum $n=10$ Accept $n \geq 10$ OR (using trial and improvement): Trial with 0.79^{9} or 0.79^{10} $\begin{aligned} & 1-0.79^{9}=0.8801(<0.9) \text { or } 0.79^{9}=0.1198(>0.1) \\ & 1-0.79^{10}=0.9053(>0.9) \text { or } 0.79^{10}=0.09468(<0.1) \end{aligned}$ Minimum $n=10$ Accept $n \geq 10$ NOTE: $n=10$ unsupported scores SC1 only	M1 for 0.79^{5} or 0.3077... M1 for $1-0.79^{5}$ dep A1 CAO M1 for equation/inequality in n (accept either statement opposite) M1(indep) for process of using logs i.e. $\frac{\log a}{\log b}$ A1 CAO M1(indep) for sight of 0.8801 or 0.1198 M1 (indep) for sight of 0.9053 or 0.09468 A1 dep on both M's cao	3
		TOTAL	16

\begin{tabular}{|c|c|c|c|}
\hline Q7
(i) \& Positive \& B1 \& 1 \\
\hline (ii) \& \[
\begin{aligned}
\& \text { Number of people }=20 \times 33(000)+5 \times 58(000) \\
\& \quad=660(000)+290(000)=950000
\end{aligned}
\] \& \begin{tabular}{l}
M1 first term \\
M1(indep) second term \\
A1 cao \\
NB answer of 950 scores M2AO
\end{tabular} \& 3 \\
\hline (iii) \& \begin{tabular}{l}
(A) \(a=1810+340=2150\) \\
(B) Median = age of \(1385\left(000^{\text {th }}\right)\) person or 1385.5 (000) \\
Age 30, cf = 1240 (000); age 40, cf = 1810 (000) \\
Estimate median \(=(30)+\frac{\mathbf{1 4 5}}{\mathbf{5 7 0}} \times 10\) \\
Median \(=32.5\) years (\(32.54 \ldots\)...) If no working shown then 32.54 or better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1
\end{tabular} \& \begin{tabular}{l}
M1 for sum \\
A1 cao 2150 or 2150 \\
thousand but not \\
215000 \\
B1 for 1385 (000) or \\
1385.5 \\
M1 for attempt to interpolate \(\frac{145 k}{570 k} \times 10\) \\
(2.54 or better suggests this) \\
A1 cao min 1dp
\end{tabular} \& 2

3

\hline (iv) \& | Frequency densities: 56, 65, 77, 59, 45, 17 |
| :--- |
| (accept 45.33 and 17.43 for 45 and 17) | \& | B1 for any one correct B1 for all correct (soi by listing or from histogram) |
| :--- |
| Note: all G marks below dep on attempt at frequency density, NOT frequency |
| G1 Linear scales on both axes (no inequalities) |
| G1 Heights FT their listed fds or all must be correct. Also widths. All blocks joined |
| G1 Appropriate label for vertical scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). |
| OR f.d. | \& 5

\hline
\end{tabular}

(v)	Any two suitable comments such as: Outer London has a greater proportion (or \%) of people under 20 (or almost equal proportion) The modal group in Inner London is 20-30 but in Outer London it is $30-40$ Outer London has a greater proportion (14\%) of aged 65+ All populations in each age group are higher in Outer London Outer London has a more evenly spread distribution or balanced distribution (ages) o.e.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	2
(vi)	```Mean increase \(\uparrow\) median unchanged (-) midrange increase \(\uparrow\) standard deviation increase \(\uparrow\) interquartile range unchanged. (-)```	Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4	4
		TOTAL	20

4766 Statistics 1

Section A

Q1	(With $\sum f x=7500$ and $\sum f=10000$ then arriving at the mean) (i) $£ 0.75$ scores (B1, B1) (ii) 75 p scores (B1, B1) (iii) 0.75 p scores ($\mathrm{B} 1, \mathrm{~B} 0$) (incorrect units) (iv) $£ 75$ scores (B1, B0) (incorrect units) After B0, B0 then sight of $\frac{\mathbf{7 5 0 0}}{\mathbf{1 0 0 0 0}}$ scores SC1. SC1or an answer in the range $£ 0.74-£ 0.76$ or 74 p - 76p (both inclusive) scores SC1 (units essential to gain this mark) Standard Deviation: (CARE NEEDED here with close proximity of answers) - 50.2(0) using divisor 9999 scores B2 (50.20148921) - 50.198 (= 50.2) using divisor 10000 scores B1(rmsd) - If divisor is not shown (or calc used) and only an answer of 50.2 (i.e. not coming from 50.198) is seen then award B2 on b.o.d. (default) After B0 scored then an attempt at $S_{x x}$ as evident by either $S_{x x}=(5000+200000+25000000)-\frac{7500^{2}}{10000} \quad(=25199375)$ or $S_{x x}=(5000+200000+25000000)-10000(0.75)^{2}$ scores (M1) or M1ft 'their $\mathbf{7 5 0 0}^{\mathbf{2}}$ ' or 'their $\mathbf{0 . 7 5}{ }^{\mathbf{2},}$ NB The structure must be correct in both above cases with a max of 1 slip only after applying the f.t.	B1 for numerical mean (0.75 or 75 seen) B1dep for correct units attached B2 correct s.d. (B1) correct rmsd (B2) default $\sum f x^{2}=25,205,000$ Beware $\sum x^{2}=25,010,100$ After B0 scored then (M1) or M1f.t. for attempt at $S_{x x}$ NB full marks for correct results from recommended method which is use of calculator functions

(ii)	P(Two $£ 10$ or two $£ 100$) $\begin{aligned} & =\frac{50}{10000} \times \frac{49}{9999}+\frac{20}{10000} \times \frac{19}{9999} \\ & =0.0000245+0.0000038 \quad=(0.00002450245+0.00000380038) \\ & =0.000028(3) \text { o.e. } \quad=(0.00002830283) \end{aligned}$ Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9×10^{-5} o.e.) $\text { Similarly, } \frac{50}{10000} \times \frac{49}{10000}+\frac{20}{10000} \times \frac{19}{10000} \text { scores SC1 }$	M1 for either correct product seen (ignore any multipliers) M1 sum of both correct (ignore any multipliers) A1 CAO (as opposite with no rounding) (SC1 case \#1) (SC1 case \#2) CARE answer is also 2.83×10^{-5}	3
		TOTAL	7
$\begin{array}{\|l} \hline \text { Q2 } \\ \text { (i) } \end{array}$	$\begin{aligned} & \text { Either } \mathrm{P}(\text { all correct })=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1}=\frac{1}{720} \\ & \text { or } \mathrm{P}(\text { all correct })=\frac{1}{6!}=\frac{1}{720}=0.00139 \end{aligned}$	M1 for 6! Or 720 (sioc) or product of fractions A1 CAO (accept 0.0014)	2
(ii)	$\begin{aligned} & \text { Either } \mathrm{P}(\text { picks } \mathrm{T}, \mathrm{O}, \mathrm{M})=\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}=\frac{1}{20} \\ & \text { or } \mathrm{P}(\text { picks } \mathrm{T}, \mathrm{O}, \mathrm{M})=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3!=\frac{1}{20} \\ & \text { or } \mathrm{P}(\text { picks } \mathrm{T}, \mathrm{O}, \mathrm{M})=\frac{1}{\binom{6}{3}}=\frac{1}{20} \end{aligned}$	M1 for denominators M1 for numerators or 3! A1 CAO Or M1 for $\binom{6}{3}$ or 20 sioc M1 for $1 /\binom{6}{3}$ A1 CAO	3
		TOTAL	5
$\begin{array}{\|l} \hline \text { Q3 } \\ \text { (i) } \end{array}$	$p=0.55$	B1 cao	1
(ii)	$\left.\begin{array}{l} \mathrm{E}(\mathrm{X})= \\ 0 \times 0.55+1 \times 0.1+2 \times 0.05+3 \times 0.05+4 \times 0.25=1.35 \\ \\ \begin{array}{rl} \mathrm{E}\left(\mathrm{X}^{2}\right) & =0 \times 0.55+1 \times 0.1+4 \times 0.05+9 \times 0.05+16 \times 0.25 \\ & =0+0.1+0.2+0.45+4 \\ & =(4.75) \end{array} \\ \\ \operatorname{Var}(\mathrm{X}) \end{array}\right) \text { 'their' } 4.75-1.35^{2}=2.9275 \mathrm{awfw}(2.9275-2.93) \text {) }$	M1 for $\operatorname{\Sigma rp}$ (at least 3 non zero terms correct) A1 CAO(no ' n ' or ' $\mathrm{n}-1$ ' divisors) M1 for $\Sigma r^{2} p$ (at least 3 non zero terms correct) M1dep for - their $E(X)^{2}$ provided $\operatorname{Var}(\mathrm{X})>0$ A1 cao (no ' n ' or ' $n-1$ ' divisors)	5
(iii)	$\mathrm{P}($ At least 2 both times $)=(0.05+0.05+0.25)^{2}=0.1225$ o.e	$\begin{aligned} & \text { M1 for }(0.05+0.05+0.25)^{2} \\ & \text { or } 0.35^{2} \text { seen } \\ & \text { A1cao: awfw }(0.1225- \\ & 0.123) \text { or } 49 / 400 \\ & \hline \end{aligned}$	2

		TOTAL	8

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \text { Q4 } \\
\& \text { (i) }
\end{aligned}
\] \& \begin{tabular}{l}
\[
X \sim \mathrm{~B}(50,0.03)
\] \\
(A) \(\quad \mathrm{P}(\boldsymbol{X}=1)=\binom{50}{1} \times 0.03 \times 0.97^{49}=0.3372\)
\[
\begin{aligned}
\& \text { (B) } \quad \mathrm{P}(\boldsymbol{X}=0)=0.97^{50}=0.2181 \\
\& \boldsymbol{P}(\boldsymbol{X}>1)=1-0.2181-0.3372=0.4447
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \(0.03 \times 0.97^{49}\) or 0.0067(4).... \\
M1 \(\binom{50}{1} \times p q^{49}(\mathrm{p}+\mathrm{q}\) \\
=1) \\
A1 CAO \\
(awfw 0. 337 to 0.3372) or \\
0.34 (2s.f.) or 0.34(2d.p.) \\
but not just 0.34 \\
B1 for \(0.97^{50}\) or 0.2181 \\
(awfw 0.218 to 0.2181) \\
M1 for \\
1 - ('their' \(\mathrm{p}(\mathrm{X}=0)\) + \\
'their' \(p(X=1)\)) \\
must have both probabilities \\
A1 CAO \\
(awfw 0.4447 to 0.445)
\end{tabular} \& 3

3

\hline (ii) \& Expected number $=n p=240 \times 0.3372=80.88-80.93=(81)$ Condone $240 \times 0.34=81.6=(82)$ but for M1 A1f.t. \& $$
\begin{aligned}
& \text { M1 for } 240 \times \operatorname{prob}(\mathrm{A}) \\
& \text { A1FT }
\end{aligned}
$$ \& 2

\hline \& \& TOTAL \& 8

\hline \[
$$
\begin{aligned}
& \hline \text { Q5 } \\
& \text { (i) }
\end{aligned}
$$

\] \& | $\mathrm{P}(\mathrm{R}) \times \mathrm{P}(L)=0.36 \times 0.25=0.09 \neq \mathrm{P}(R \cap L)$ |
| :--- |
| Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09 $\neq 0.2$ or $\neq \mathrm{p}(\mathrm{R} \cap \mathrm{L})$ so not independent) | \& M1 for 0.36×0.25 or 0.09 seen A1 (numerical justification needed) \& 2

\hline (ii) \& \& | G1 for two overlapping circles labelled |
| :--- |
| G1 for 0.2 and either 0.16 or 0.05 in the correct places |
| G1 for all 4 correct probs in the correct places (including the 0.59) |
| The last two G marks are independent of the labels | \& 3

\hline (iii) \& | $P(L \mid R)=\frac{P(L \cap R)}{P(R)}=\frac{0.2}{0.36}=\frac{5}{9}=0.556(\text { awrt } 0.56)$ |
| :--- |
| This is the probability that Anna is late given that it is raining. (must be in context) |
| Condone 'if' 'or 'when' or 'on a rainy day' for 'given that' but not the words 'and' or 'because' or 'due to' | \& | M1 for 0.2/0.36 o.e. |
| :--- |
| A1 cao |
| E1 (indep of M1A1) Order/structure must be correct i.e. no reverse statement | \& 3

\hline \& \& TOTAL \& 8

\hline
\end{tabular}

Section B

Q6 (i)	Median $=4.06-4.075$ (inclusive) $\mathrm{Q}_{1}=3.8$ $\mathrm{Q}_{3}=4.3$	B1cao Inter-quartile range $=4.3-3.8=0.5$	B1 for Q1 (cao) B1 for Q3 (cao)
B1 ft for IQR must be			
using t-values not			
locations to earn this			
mark			

Q7 (i)	$X \sim \mathrm{~B}(10,0.8)$ (A) Either $\mathrm{P}(\boldsymbol{X}=8)=\binom{10}{8} \times 0.8^{8} \times 0.2^{2}=0.3020$ (awrt) or $\begin{aligned} \mathrm{P}(X=8) & =\mathrm{P}(X \leq 8)-\mathrm{P}(X \leq 7) \\ & =0.6242-0.3222=0.3020 \end{aligned}$ (B) Either $\begin{aligned} \mathrm{P}(X \geq 8) & =1-\mathrm{P}(X \leq 7) \\ & =1-0.3222=0.6778 \end{aligned}$ or $\begin{aligned} \mathrm{P}(X \geq 8) & =\mathrm{P}(X=8)+\mathrm{P}(X=9)+\mathrm{P}(X=10) \\ & =0.3020+0.2684+0.1074=0.6778 \end{aligned}$	M1 $0.8^{8} \times 0.2^{2}$ or 0.00671... M1 $\binom{10}{8} \times p^{8} q^{2} ;(\mathrm{p}+\mathrm{q}$ $=1$) Or $45 \times p^{8} q^{2} ;(\mathrm{p}+\mathrm{q}=1)$ A1 CAO (0.302) not 0.3 OR: M2 for 0.6242 0.3222 A1 CAO M1 for $1-0.3222$ (s.o.i.) A1 CAO awfw $0.677-0.678$ or M1 for sum of 'their' $\mathrm{p}(\mathrm{X}=8)$ plus correct expressions for $\mathrm{p}(\mathrm{x}=9)$ and $\mathrm{p}(\mathrm{X}=10)$ A1 CAO awfw 0.677-0.678	3
(ii)	Let $X \sim \mathrm{~B}(18, p)$ Let $p=$ probability of delivery (within 24 hours) (for population) $\begin{aligned} & \mathrm{H}_{0}: p=0.8 \\ & \mathrm{H}_{1}: p<0.8 \end{aligned}$ $\mathrm{P}(X \leq 12)=0.1329>5 \% \quad \text { ref: }[\mathrm{pp}=0.0816]$ So not enough evidence to reject H_{0} Conclude that there is not enough evidence to indicate that less than 80% of orders will be delivered within 24 hours Note: use of critical region method scores M1 for region $\{0,1,2, \ldots, 9,10\}$ M1dep for 12 does not lie in critical region then A1dep E1dep as per scheme	B1 for definition of p B1 for H_{0} B1 for H_{1} M1 for probability 0.1329 M1dep strictly for comparison of 0.1329 with 5% (seen or clearly implied) A1dep on both M's E1dep on M1,M1,A1 for conclusion in context	7

(iii)	Let $X \sim \mathrm{~B}(18,0.8)$ $\mathrm{H}_{1}: p \neq 0.8$ LOWER TAIL $\begin{aligned} & \mathrm{P}(X \leq 10)=0.0163<2.5 \% \\ & \mathrm{P}(X \leq 11)=0.0513>2.5 \% \end{aligned}$ UPPER TAIL $\begin{aligned} & \mathrm{P}(X \geq 17)=1-\mathrm{P}(X \leq 16)=1-0.9009=0.0991>2.5 \% \\ & \mathrm{P}(X \geq 18)=1-\mathrm{P}(X \leq 17)=1-0.9820=0.0180<2.5 \% \end{aligned}$ So critical region is $\{\underline{0}, 1,2,3,4,5,6,7,8,9,10,18\}$ o.e. Condone $X \leq 10$ and $X \geq 18$ or $X=18$ but not $p(X \leq 10)$ and $\mathrm{p}(\mathrm{X} \geq 18)$ Correct CR without supportive working scores SC2 max after the $1^{\text {st }} \mathrm{B} 1$ (SC 1 for each fully correct tail of CR)	B1 for H_{1} B1 for 0.0163 or 0.0513 seen M1dep for either correct comparison with $\mathbf{2 . 5 \%}$ (not 5\%) (seen or clearly implied) A1dep for correct lower tail CR (must have zero) B1 for 0.0991 or 0.0180 seen M1dep for either correct comparison with $\mathbf{2 . 5 \%}$ (not 5\%) (seen or clearly implied) A1dep for correct upper tail CR	7
		TOTAL	19

4766 Statistics 1

Q1 (i)	Median $=2$ Mode $=1$	B1 CAO B1 CAO	$\mathbf{2}$
(ii)	S1 labelled linear Scales on both axes H1 heights		

$\begin{aligned} & \text { Q7 } \\ & \text { (i) } \end{aligned}$	$a=0.8, b=0.85, c=0.9$.	B1 for any one B1 for the other two	2
(ii)	$\begin{aligned} & P(\text { Not delayed })=0.8 \times 0.85 \times 0.9=0.612 \\ & P(\text { Delayed })=1-0.8 \times 0.85 \times 0.9=1-0.612=0.388 \end{aligned}$	M1 for product A1 CAO M1 for 1 - P (delayed) A1FT	4
(iii)	$\begin{aligned} & \text { P(just one problem) } \\ & \quad=0.2 \times 0.85 \times 0.9+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1 \\ & =0.153+0.108+0.068=0.329 \end{aligned}$	B1 one product correct M1 three products M1 sum of 3 products A1 CAO	4
(iv)	$\begin{aligned} & \mathrm{P}(\text { Just one problem \| delay }) \\ & =\frac{\mathrm{P}(\text { Just one problem and delay })}{\mathrm{P}(\text { Delay })}=\frac{0.329}{0.388}=0.848 \end{aligned}$	M1 for numerator M1 for denominator A1FT	3
(v)	P (Delayed \| No technical problems) Either $=0.15+0.85 \times 0.1=0.235$ $\text { Or }=1-0.9 \times 0.85=1-0.765=0.235$ $\text { Or }=0.15 \times 0.1+0.15 \times 0.9+0.85 \times 0.1=0.235$ Or (using conditional probability formula) $\begin{aligned} & \frac{P(\text { Delayed and no technical problems })}{P(\text { No technical problems })} \\ & =\frac{0.8 \times 0.15 \times 0.1+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1}{0.8} \\ & =\frac{0.188}{0.8}=0.235 \end{aligned}$	M1 for 0.15 + M1 for second term A1CAO M1 for product M1 for 1 - product A1CAO M1 for all 3 products M1 for sum of all 3 products A1CAO M1 for numerator M1 for denominator A1CAO	3
(vi)	Expected number $=110 \times 0.388=42.7$	M1 for product A1FT	2
		TOTAL	18

$\begin{array}{\|l} \hline \text { Q8 } \\ \text { (i) } \end{array}$	$X \sim B(15,0.2)$ (A) $\quad \mathrm{P}(\boldsymbol{X}=3)=\binom{15}{3} \times 0.2^{3} \times 0.8^{12}=0.2501$ OR from tables $\quad 0.6482-0.3980=0.2502$ (B) $\mathrm{P}(\boldsymbol{X} \geq 3)=1-0.3980=0.6020$ (C) $\mathrm{E}(X)=n p=15 \times 0.2=3.0$	M1 $0.2^{3} \times 0.8^{12}$ M1 $\binom{15}{3} \times p^{3} q^{12}$ A1 CAO OR: M2 for 0.6482 0.3980 A1 CAO M1 $P(X \leq 2)$ M1 1-P(X $\leq 2)$ A1 CAO M1 for product A1 CAO	3 3 2
(ii)	(A) Let $p=$ probability of a randomly selected child eating at least 5 a day $\mathrm{H}_{0}: p=0.2$ $\mathrm{H}_{1}: p>0.2$ (B) $\quad \mathrm{H}_{1}$ has this form as the proportion who eat at least 5 a day is expected to increase.	B1 for definition of p in context B1 for H_{0} B1 for H_{1} E1	4
(iii)	$\begin{aligned} & \text { Let } X \sim \mathrm{~B}(15,0.2) \\ & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.8358=0.1642>10 \% \\ & \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.9389=0.0611<10 \% \end{aligned}$ So critical region is $\{6,7,8,9,10,11,12,13,14,15\}$ 7 lies in the critical region, so we reject null hypothesis and we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased.	B1 for 0.1642 B1 for 0.0611 M1 for at least one comparison with 10\% A1 CAO for critical region dep on M1 and at least one B1 M1 dep for comparison A1 dep for decision and conclusion in context	6
		TOTAL	18

4766 Statistics 1

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& (i) \& \begin{tabular}{cc|cccccccccc}
\& 5 \& 2 \& \& \& \& \& \& \& \& \\
\& 6 \& 3 \& 4 \& 7 \& 8 \& \& \& \& \& \\
\& 7 \& 1 \& 2 \& 2 \& 3 \& 4 \& 5 \& 5 \& 7 \& 9 \\
\& 8 \& 1 \& \& \& \& \& \& \& \& \\
\& Key \& 6 \& 3 \& represents 63 mph \& \& \&
\end{tabular} \& \begin{tabular}{l}
G1 stem \\
G1 leaves CAO \\
G1 sorted \\
G1 key
\end{tabular} \& [4] \\
\hline \& (ii) \& \[
\begin{aligned}
\& \text { Median = } 72 \\
\& \text { Midrange }=66.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 FT } \\
\& \text { B1 CAO }
\end{aligned}
\] \& [2] \\
\hline \& (iii) \& EITHER: Median since midrange is affected by outlier (52) \(O R\) : Median since the lack of symmetry renders the midrange less representative \& \begin{tabular}{l}
E1 for median E1 for explanation \\
TOTAL
\end{tabular} \& [2]
[8] \\
\hline 2 \& (i) \& \begin{tabular}{l}
(A) \(\mathrm{P}(X=10)=\mathrm{P}(5\) then 5\()=0.4 \times 0.25=0.1\) \\
(B) \(\mathrm{P}(X=30)=\mathrm{P}(10\) and 20\()=0.4 \times 0.25+0.2 \times 0.5=0.2\)
\end{tabular} \& \begin{tabular}{l}
B1 ANSWER GIVEN \\
M1 for full calculation \\
A1 ANSWER GIVEN
\end{tabular} \& \begin{tabular}{l}
[1] \\
[2]
\end{tabular} \\
\hline \& (ii) \& \[
\begin{aligned}
\& \mathrm{E}(\mathrm{X})=10 \times 0.1+15 \times 0.4+20 \times 0.1+25 \times 0.2+30 \times 0.2=20 \\
\& \mathrm{E}\left(\mathrm{X}^{2}\right)= \\
\& \quad 100 \times 0.1+225 \times 0.4+400 \times 0.1+625 \times 0.2+900 \times 0.2=445 \\
\& \operatorname{Var}(X)=445-20^{2}=45
\end{aligned}
\] \& \begin{tabular}{l}
M1 for \(\Sigma \mathrm{rp}\) (at least 3 terms correct) \\
A1 CAO \\
M1 for \(\Sigma r^{2} p\) (at least 3 terms correct) \\
M1 dep for - their E (X) \({ }^{2}\) \\
A1 FT their E(X) provided \(\operatorname{Var}(\mathrm{X}\)) \(>0\) \\
TOTAL
\end{tabular} \& [5]
[8] \\
\hline 3 \& (i)

(ii) \& \begin{tabular}{l}
$$
\mathrm{P}(G) \times \mathrm{P}(R)=0.24 \times 0.13=0.0312 \neq \mathrm{P}(G \cap R) \text { or } \neq 0.06
$$

So not independent.

 \&

G1 for two labelled intersecting circles

G1 for at least 2 correct probabilities

G1 for remaining probabilities

M1 for 0.24×0.13 A1
\end{tabular} \& [3]

[2]

\hline
\end{tabular}

	(iii)	$P(R \mid G)=\frac{P(R \cap G)}{P(G)}=\frac{0.06}{0.24}=\frac{1}{4}=0.25$	M1 for numerator M1 for denominator A1 CAO TOTAL	[3] [8]
4	(i)	$\mathrm{P}(20$ correct $)=\binom{30}{20} \times 0.6^{20} \times 0.4^{10}=0.1152$	M1 $0.6^{20} \times 0.4^{10}$ M1 $\binom{30}{20} \times p^{20} q^{10}$ A1 CAO	[3]
	(ii)	Expected number $=100 \times 0.1152=11.52$	M1 A1 FT (Must not round to whole number) TOTAL	[2] [5]
5	(i)	$\mathrm{P}($ Guess correctly $)=0.1^{4}=0.0001$	B1 CAO	[1]
	(ii)	$\mathrm{P}($ Guess correctly $)=\frac{1}{4!}=\frac{1}{24}$	M1 A1 CAO TOTAL	[2] [3]
6	(i)	$20 \times 19 \times 18=6840$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	[2]
	(ii)	$20^{3}-20=7980$	M1 for figures - 20 A1 TOTAL	[2] [4]

\begin{tabular}{|c|c|c|c|c|}
\hline 8 \& (i) \& \begin{tabular}{l}
(A) \(\mathrm{P}(\) Low on all 3 days \()=0.5^{3}=0.125\) or \(1 / 8\) \\
(B) \(\mathrm{P}(\) Low on at least 1 day \()=1-0.5^{3}=1-0.125=0.875\) \\
(C) P (One low, one medium, one high)
\[
=6 \times 0.5 \times 0.35 \times 0.15=0.1575
\]
\end{tabular} \& \begin{tabular}{l}
M1 for \(0.5^{3}\) \\
A1 CAO \\
M1 for \(1-0.5^{3}\) \\
A1 CAO \\
M1 for product of probabilities \(0.5 \times\) \(0.35 \times 0.15\) or \({ }^{21} / 800\) \(\mathrm{M} 1 \times 6\) or \(\times 3\) ! or \({ }^{3} \mathrm{P}_{3}\) \\
A1 CAO
\end{tabular} \& [2]
[2]
[3] \\
\hline \& (ii) \& \begin{tabular}{l}
\[
\mathrm{X} \sim \mathrm{~B}(10,0.15)
\] \\
(A) \(\mathrm{P}(\) No days \()=0.85^{10}=0.1969\) \\
Or from tables \(\mathrm{P}(\) No days \()=0.1969\) \\
(B) Either \(\mathrm{P}(1\) day \()=\binom{10}{1} \times 0.15^{1} \times 0.85^{9}=0.3474\) or from tables \(\mathrm{P}(1\) day \()=\mathrm{P}(X \leq 1)-\mathrm{P}(X \leq 0)\) \(=0.5443-0.1969=0.3474\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \(0.15^{1} \times 0.85^{9}\) \\
M1 \(\binom{10}{1} \times p^{1} q^{9}\) \\
A1 CAO \\
OR: M2 for 0.5443 -
\[
0.1969
\] \\
A1 CAO
\end{tabular} \& [2]

[3]

\hline \& (iii) \& | Let $X \sim \mathrm{~B}(20,0.5)$ |
| :--- |
| Either: $\mathrm{P}(X \geq 15)=1-0.9793=0.0207<5 \%$ |
| Or: Critical region is $\{15,16,17,18,19,20\}$ |
| 15 lies in the critical region. |
| So there is sufficient evidence to reject H_{0} |
| Conclude that there is enough evidence to indicate that the probability of low pollution levels is higher on the new street. |
| H_{1} has this form as she believes that the probability of a low pollution level is greater in this street. | \& | Either: |
| :--- |
| B1 for correct probability of 0.0207 |
| M1 for comparison Or: |
| B1 for CR, |
| M1 for comparison |
| A1 CAO dep on B1M1 |
| E1 for conclusion in context |
| E1 indep | \& [5]

[17]

\hline
\end{tabular}

GCE

Mathematics (MEI)

Advanced Subsidiary GCE 4766
Statistics 1

Mark Scheme for June 2010

Q1 (i)	Positive skewness				B1	1
(ii)	$\begin{aligned} & \text { Inter-quartile range }=10.3-8.0=2.3 \\ & \text { Lower limit } 8.0-1.5 \times 2.3=4.55 \\ & \text { Upper limit } 10.3+1.5 \times 2.3=13.75 \end{aligned}$ Lowest value is 7 so no outliers at lower end Highest value is 17.6 so at least one outlier at upper end.				B1 M1 for $8.0-1.5 \times 2.3$ M1 for $10.3+1.5 \times 2.3$ A1 A1	5
(iii)	Any suitable answers Eg minimum wage means no very low values Highest wage earner may be a supervisor or manager or specialist worker or more highly trained worker				E1 one comment relating to low earners E1 one comment relating to high earners	
					TOTAL	8
$\begin{aligned} & \text { Q2 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & 4 k+6 k+6 k+4 k=1 \\ & 20 k=1 \\ & k=0.05 \end{aligned}$				M1 A1 NB Answer given	2
(ii)	$\mathrm{E}(\mathrm{X})=1 \times 0.2+2 \times 0.3+3 \times 0.3+4 \times 0.2=2.5$ (or by inspection) $\mathrm{E}\left(\mathrm{X}^{2}\right)=1 \times 0.2+4 \times 0.3+9 \times 0.3+16 \times 0.2=7.3$ $\operatorname{Var}(X)=7.3-2.5^{2}=1.05$				M1 for $\Sigma r p$ (at least 3 terms correct) A1 CAO M1 for $\Sigma r^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(\mathrm{X})^{2}$ A1 FT their $\mathrm{E}(\mathrm{X})$ provided $\operatorname{Var}(\mathrm{X})>0$	5
					TOTAL	7
Q3 (i)	Lifetime (x hours) $\begin{gathered} 0<x \leq 20 \\ \hline 20<x \leq 30 \\ \hline 30<x \leq 50 \\ \hline 50<x \leq 65 \\ \hline 65<x \leq 100 \\ \hline \end{gathered}$	Frequency 24 13 14 21 18	Width 20 10 20 15 35 	FD 1.2 1.3 0.7 1.4 0.51	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 10 hours. L1 linear scales on both axes and label on vert axis W1 width of bars H1 height of bars	5

(ii)	Median lies in third class interval $(30<x \leq 50)$ Median $=45.5$ th lifetime (which lies beyond 37 but not as far as 51)	B1 CAO E1 dep on B1	2
		TOTAL	7
$\begin{aligned} & \mathrm{Q} 4 \\ & \text { (i) } \end{aligned}$	$1 \times \frac{1}{5}=\frac{1}{5}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2
(ii)	$1 \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5}=\frac{24}{625}=0.0384$	M1 For $1 \times \frac{4}{5} \times$ or just $\frac{4}{5} \times$ M1 dep for fully correct product A1	3
(iii)	$1-0.0384=0.9616$ or 601/625	B1	1
		TOTAL	6
$\begin{aligned} & \text { Q5 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Mean }= \\ & \frac{0 \times 37+1 \times 23+2 \times 11+3 \times 3+4 \times 0+5 \times 1}{75}=\frac{59}{75}=0.787 \\ & \mathrm{~S}_{x x}= \\ & 0^{2} \times 37+1^{2} \times 23+2^{2} \times 11+3^{2} \times 3+4^{2} \times 0+5^{2} \times 1-\frac{59^{2}}{75}=72.59 \\ & \mathrm{~s}=\sqrt{\frac{72.59}{74}}=0.99 \end{aligned}$	M1 A1 M1 for $\Sigma \mathrm{fx}^{2}$ s.o.i. M1 dep for good attempt at $\mathrm{S}_{x x}$ BUT NOTE M1M0 if their $S_{x x}<0$ A1 CAO	5
(ii)	New mean $=0.787 \times £ 1.04=£ 0.818$ or 81.8 pence New s $=0.99 \times £ 1.04=£ 1.03$ or 103 pence	B 1 ft their mean B1 ft their s B1 for correct units dep on at least 1 correct (ft)	3
		TOTAL	8
	Section B		
$\begin{aligned} & \text { Q6 } \\ & \text { (i) } \end{aligned}$	$\mathrm{X} \sim \mathrm{~B}(18,0.1)$ (A) $\quad \mathrm{P}(2$ faulty tiles $)=\binom{18}{2} \times 0.1^{2} \times 0.9^{16}=0.2835$ OR from tables $\quad 0.7338-0.4503=0.2835$ (B) $\quad \mathrm{P}$ (More than 2 faulty tiles) $=1-0.7338=0.2662$	M1 $0.1^{2} \times 0.9^{16}$ M1 $\binom{18}{2} \times p^{2} q^{16}$ A1 CAO OR: M2 for 0.7338 0.4503 A1 CAO M1 $\mathrm{P}(X \leq 2)$ M1 dep for 1- $\mathrm{P}(\mathrm{X} \leq 2)$ A1 CAO	3

	(C) $\mathrm{E}(X)=n p=18 \times 0.1=1.8$	M1 for product 18×0.1 A1 CAO	2
(ii)	(A) Let $p=$ probability that a randomly selected tile is faulty $\begin{aligned} & \mathrm{H}_{0}: p=0.1 \\ & \mathrm{H}_{1}: p>0.1 \end{aligned}$	B1 for definition of p in context B1 for H_{0} B1 for H_{1}	3
	(B) $\quad \mathrm{H}_{1}$ has this form as the manufacturer believes that the number of faulty tiles may increase.	E1	1
(iii)	$\begin{array}{\|l} \text { Let } X \sim \mathrm{~B}(18,0.1) \\ \mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)=1-0.9018=0.0982>5 \% \\ \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.9718=0.0282<5 \% \end{array}$ So critical region is $\{5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$	B1 for 0.0982 B1 for 0.0282 M1 for at least one comparison with 5\% A1 CAO for critical region dep on M1 and at least one B1	4
(iv)	4 does not lie in the critical region, (so there is insufficient evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that the number of faulty tiles has increased.	M1 for comparison A1 for conclusion in context	2
		TOTAL	18
$\begin{aligned} & \text { Q7 } \\ & \text { (i) } \end{aligned}$		G1 first set of branches G1 indep second set of branches G1 indep third set of branches G1 labels	4

(ii)	(A) $\mathrm{P}($ all on time $)=0.95^{3}=0.8574$ $\begin{aligned} & \text { (B) } P(\text { just one on time })= \\ & 0.95 \times 0.05 \times 0.4+0.05 \times 0.6 \times 0.05+0.05 \times 0.4 \times 0.6 \\ & =0.019+0.0015+0.012=0.0325 \end{aligned}$ $\begin{aligned} & \text { (C) } \mathrm{P}(1200 \text { is on time })= \\ & 0.95 \times 0.95 \times 0.95+0.95 \times 0.05 \times 0.6+0.05 \times 0.6 \times 0.95+ \\ & 0.05 \times 0.4 \times 0.6=0.857375+0.0285+0.0285+0.012=0.926375 \end{aligned}$	M1 for 0.95^{3} A1 CAO M1 first term M1 second term M1 third term A1 CAO M1 any two terms M1 third term M1 fourth term A1 CAO	2 4 4 4
(iii)	$\mathrm{P}(1000$ on time given 1200 on time $)=$ $\mathrm{P}(1000$ on time and 1200 on time $) / \mathrm{P}(1200$ on time $)=$ $\frac{0.95 \times 0.95 \times 0.95+0.95 \times 0.05 \times 0.6}{0.926375}=\frac{0.885875}{0.926375}=0.9563$	M1 either term of numerator M1 full numerator M1 denominator A1 CAO	4
		Total	18

GCE

Mathematics (MEI)

Advanced Subsidiary GCE

Unit 4766: Statistics 1

Mark Scheme for January 2011

	SECTION A			
$\begin{aligned} & \hline \text { Q1 } \\ & \text { (i) } \end{aligned}$	Mode = 960 (grams) Median = 1020 (grams) N.B. 96 and 102 gets SC1	$\begin{array}{\|l} \hline \text { B1 CAO } \\ \text { B1 CAO } \end{array}$	2	Ignore units and working
(ii)	Positive	E1	1	Not right skewed Not positive correlation
		TOTAL	3	
Q2 (i)	$\mathrm{P}(\text { product of two scores }<10)=\frac{13}{16}=0.8125$	B1	1	Allow 0.813 or 0.812
(ii)	$\begin{aligned} & \mathrm{P}(\text { even }) \times \mathrm{P}(<10)=0.5 \times \frac{13}{16}=\frac{13}{32}=0.40625 \\ & \mathrm{P}(\text { even } \cap<10)=\frac{6}{16}=0.375 \end{aligned}$ So not independent.	M1 for $0.5 \times \frac{13}{16}$ or $\frac{13}{32}$ FT their answer to (i) M1 for $\frac{6}{16}$ A1	3	Do not allow these embedded in probability formulae Also allow $\mathrm{P}($ even $\mid<10)=6 / 13 \neq \mathrm{P}($ even $)=1 / 2$ Or $\mathrm{P}(<10 \mid$ even $)=6 / 8 \neq \mathrm{P}(<10)=13 / 16$ Or $\mathrm{P}($ even $\mid<10)=6 / 13 \neq \mathrm{P}\left(\right.$ even $\left.\mid<10^{\prime}\right)=2 / 3$ Or $\mathrm{P}(<10 \mid$ even $)=6 / 8 \neq \mathrm{P}(<10 \mid$ even' $)=7 / 8$ For all of these alternatives allow M2 for both probabilities. (M1 not available except if they correctly state both probabilities EG P(even $\mid<10$) and $\mathrm{P}($ even $)$ and get one correct) If they do not state what probabilities they are finding, give M2 for one of the above pairs of probabilities with \neq symbol
		TOTAL	4	

Q3 (i)	$\binom{13}{3}$ ways of choosing the men $=286$	M1 for $\binom{13}{3}$ seen A1	2	Accept ${ }^{13} \mathrm{C}_{3}$ or ${ }^{13!} /(3!10!)$ or equivalent for M1 No marks for permutations
(ii)	$\binom{13}{3} \times\binom{ 10}{3}=286 \times 120=34320$	M1 for product A1 FT their 286	2	For permutations $1716 \times 720=1235520$ allow SC1 406 (from $286+120$) scores SC1 (without further working)
(iii)	$\begin{aligned} & \binom{23}{6}=100947 \\ & 34320 / 100947=1040 / 3059=0.340(\text { allow } 0.34) \end{aligned}$	M1 for denominator of $\binom{23}{6}$ A1 FT	2	FT their 34320 Or ${ }^{6} \mathrm{C}_{3} \times 13 / 23 \times 12 / 22 \times 11 / 21 \times 10 / 20 \times 9 / 19 \times 8 / 18=$ 0.340 scores M1 for product of fractions and A1 for ${ }^{6} \mathrm{C}_{3} \times$ and correct evaluation For permutations 1235520/72681840=0.017 scores SC1 Allow full marks for fractional answers, even if unsimplified 406/100947 $=0.00402$ gets M1A1 with or without working
		TOTAL	6	

Q4 (i)	$\begin{aligned} & 2 k+6 k+12 k+20 k+30 k=1,70 k=1 \\ & k=\frac{1}{70} \end{aligned}$	M1 A1 NB ANSWER GIVEN	2	For five multiples of k (at least four correct multiples) Do not need to sum or $=1$ for M1 Condone omission of either $70 k=1$ or $k=1 / 70$ but not both Condone omission of $k: \quad 2+6+12+20+30=70$ Allow substitution of $k=1 / 70$ into formula and getting at least four of $2 / 70,6 / 70,12 / 70,20 / 70,30 / 70$ for M1 and $2 / 70+6 / 70+12 / 70+20 / 70+30 / 70=1$ for A1
(ii)	$\begin{aligned} & \mathrm{E}(\mathrm{X})=1 \times \frac{2}{70}+2 \times \frac{6}{70}+3 \times \frac{12}{70}+4 \times \frac{20}{70}+5 \times \frac{30}{70}=4 \\ & \mathrm{E}\left(\mathrm{X}^{2}\right)= \\ & 1 \times \frac{2}{70}+4 \times \frac{6}{70}+9 \times \frac{12}{70}+16 \times \frac{20}{70}+25 \times \frac{30}{70}=\frac{1204}{70}=17.2 \\ & \operatorname{Var}(\mathrm{X})=17.2-4^{2}=1.2 \end{aligned}$	M1 for $\Sigma r p$ (at least 3 terms correct) A1 CAO M1 for $\Sigma r^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(\mathrm{X})^{2}$ A1 FT their $\mathrm{E}(\mathrm{X})$ but not an error in $\mathrm{E}\left(\mathrm{X}^{2}\right)$ provided $\operatorname{Var}(\mathrm{X})>0$	5	280/70 scores M1A0 USE of $E(X-\mu)^{2}$ gets M1 for attempt at $(x-\mu)^{2}$ should see $(-3)^{2},(-2)^{2},(-1)^{2}, 0^{2}, 1^{2}$ (if $\mathrm{E}(X)$ correct but FT their $\mathrm{E}(X)$) (all 5 correct for M1), then M1 for $\Sigma \mathrm{p}(x-\mu)^{2}$ (at least 3 terms correct with their probabilities) Allow all M marks with their probabilities, (unless not between 0 and 1 , see below for all probs $1 / 70$). Division by 5 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $\mathrm{E}(X)$ also divided by 5 . Unsupported correct answers get 5 marks. SC2 for use of $1 / 70$ for all probabilities leading to $E(X)=3 / 14$ and $\operatorname{Var}(X)=145 / 196=0.74$
		TOTAL	7	

Q5 (i)	$\begin{gathered} \mathrm{P}(\text { Wet and bus })=0.4 \times 0.7 \\ =0.28 \end{gathered}$	M1 for multiplying probabilities A1 CAO	2	Fractional answer $=7 / 25$ (Allow 28/100)
(ii)	$\begin{aligned} & \mathrm{P}(\text { Walk or bike })= \\ & 0.6 \times 0.5+0.6 \times 0.4+0.4 \times 0.2+0.4 \times 0.1 \text { or } \\ & 0.3+0.24+0.08+0.04 \\ & =0.66 \end{aligned}$	M1 for any two correct pairs M1 for sum of all four correct terms With no extra terms for second M1 A1 CAO	3	Or $=0.6 \times 0.9+0.4 \times 0.3$ gets M1 for either term $=0.54+0.12$ gets M1 for sum of both A1 CAO Or $=1-0.6 \times 0.1-0.4 \times 0.7=0.66$. M1 for $1-$ one correct term, M1 for complete correct expression and A1 for correct evaluation.
(iii)	$\begin{aligned} & P(\text { Dry given walk or bike })=\frac{P(\text { Dry and walk or bike })}{P(\text { Walk or bike })} \\ & =\frac{0.6 \times 0.9}{0.66}=\frac{0.54}{0.66}=\frac{9}{11}=0.818 \end{aligned}$	M1 for numerator leading to 0.54 M1 for denominator Ft their P(Walk or bike) from (ii) provided between 0 and 1 A1 FT	3	Allow 0.82 , not 0.819 More accurate answer $=0.81818$ Fractional answer $=54 / 66=27 / 33=9 / 11$ Condone answer of 0.8181 Do not give final A1 if ans ≥ 1
		TOTAL	8	

Q6 (i)	(A) $\quad \mathrm{P}($ Avoided air travel $)=\frac{7}{100}=0.07$ (B) $\quad \mathrm{P}($ At least two $)=\frac{11+2+1+4}{100}=\frac{18}{100}=\frac{9}{50}=0.18$	B1 aef isw M1 for $(11+2+1+4) / 100$ A1 aef isw	1	For M1 terms must be added must be as above or better with no extra terms (added or subtracted) for M1 Must simplify to $18 / 100$ or $9 / 50$ or 0.18 for A1 SC1 for 18/58 Or $1-(14+26+0+42) / 100=0.18$ gets M1A1
(ii)	$\mathrm{P}($ Reduced car use \| Avoided air travel $)=\frac{6}{7}=0.857$	M1 for denominator 7 or $7 / 100$ or 0.07 FT their (i)A A1 CAO	2	Allow 0.86
(iii)	$P(\text { None have avoided air travel })=\frac{93}{100} \times \frac{92}{99} \times \frac{91}{98}=0.8025$	M1 for 93/100× (triple product) M1 for product of remaining fractions A1	3	Fuller answer 0.802511 , so allow 0.803 without working, but 0.80 or 0.8 only with working . $(93 / 100)^{3}$ scores M1M0A0 which gives answer 0.804357 so watch for this. M0M0A0 for binomial probability including 0.93^{100} but ${ }^{3} \mathrm{C}_{0} \times 0.07^{0} \times 0.93^{3}$ still scores M1 $(k / 100)^{3}$ for values of k other than 93 scores M0M0A0 $\frac{k}{100} \times \frac{(k-1)}{99} \times \frac{(k-2)}{98}$ for values of k other than 93 scores M1M0A0 Correct working but then multiplied or divided by some factor scores M1M0A0 ${ }^{93} \mathrm{P}_{3} /{ }^{100} \mathrm{P}_{3}=0.803 \quad{ }^{93} \mathrm{P}_{3}$ seen M 1 divided by ${ }^{100} \mathrm{P}_{3}$ M1 0.803 A 1 ${ }^{93} \mathrm{C}_{3} /{ }^{100} \mathrm{C}_{3}=0.803$ Allow unsimplified fractional answer 778596/970200 $=9269 / 11550$
		TOTAL	8	

(ii)	$\begin{aligned} & \text { Mean }=\frac{10 \times 238+30 \times 365+50 \times 142+80 \times 128+150 \times 45}{918} \\ & =\frac{37420}{918}=40.8 \end{aligned}$	M1 for midpoints M1 for midpoints \times frequencies with divisor 918 A1 CAO	3	At least three midpoints correct for M1 (seen in (ii) or in table in (i)) No marks if not using midpoints Second M1 for sight of at least 3 double pairs seen out of $10 \times 238+30 \times 365+50 \times 142+80 \times 128+150 \times$ 45 with divisor 918 $\text { Numerator }=2380+10950+7100+10240+6750$ Use of LCB or UCB for midpoints here scores 0 For answer 40.76 or 40.8 or 41 mark as B3 37420/918 o.e. scores M1M1A0 NB Accept answers seen without working in part (ii) or (iii) (from calculator) Use of 'not quite right' midpoints such as $10.5,30.5$, etc can get M0M1A0 here and SC3 in (iii) Watch for incorrect method $238 / 10+365 / 30+142 / 50+128 / 80+45 / 150=40.71$ Allow max 4 sf in final answer Also accept $£ 40760, £ 40800$ etc
(iii)	$\begin{aligned} & \sum f x^{2}=238 \times 10^{2}+365 \times 30^{2}+142 \times 50^{2}+128 \times 80^{2}+45 \times 150^{2} \\ & =2539000 \\ & \text { Or } 238 \times 100+365 \times 900+142 \times 2500+128 \times 6400+ \\ & 45 \times 22500=2539000 \\ & \text { Or } 2380 \times 10+10950 \times 300+7100 \times 50+10240 \times 80+ \\ & 13500 \times 150=2539000 \\ & S_{x x}=2539000-\frac{37420^{2}}{918}=1013666 \\ & s=\sqrt{\frac{1013666}{917}}=33.2 \end{aligned}$	M1 for at least 3 multiples $f x^{2}$ A1 for $\Sigma f x^{2}$ M1 for attempt at $S_{x x}$ Dep on first M1 BUT NOTE M1M0 if their $S_{x x}<0$ A1 CAO If using LCB or UCB	4	For A1, all midpoints and frequencies correct Or $S x x=2539000-918 \times 40.76^{2}=1013855$, $\mathrm{s}=33.25$. Using mean 40.8 leads to 1010861 , $\mathrm{s}=$ 33.20, Using mean $=41$ leads to $S_{x x}=995844$ and s $=32.95$ M1M1 for $\sum f(x-x b a r)^{2}$ M1 for first three terms, M1 for all 5 terms $238 \times(10-40.76)^{2}+365 \times(30-40.76)^{2}+142 \times(50-$ $40.76)^{2}+128 \times(80-40.76)^{2}+45 \times(150-40.76)^{2}(=$ 1013666) A1 for $S_{x x}=1013666$ A1 for final answer

		consistently then allow SC2 if working is fully correct but SC0 otherwise but no marks in part (ii)		For answer 33.25 or 33.3 or 33.2 (www) can just mark as B4 - these may be from calculator without working Allow 33 with correct working rmsd $=\sqrt{ }(1013666 / 918)(=33.23)$ gets M1A1M1A0 (if seen) WATCH FOR DIVISOR OF 918 Allow max 4 sf in final answer Allow $£ 33200$ etc
(iv)	$\begin{aligned} & (\bar{x}-2 s=40.76-2 \times 33.25=-25.74) \\ & \bar{x}+2 s=40.76+2 \times 33.25=107.26 \end{aligned}$ Comment that there are almost certainly some outliers. Appropriate comment such as 'No, since there is nothing to indicate that these high earners represent a separate population.'	M1 for $\bar{X}+2 s$ or $\bar{x}-2 s$ A1 for 107.26 (FT) E1 E1 Dep on upper limit in range 106-108	4	FT any positive mean and positive sd for M1 Only follow through numerical values, not variables such as s, so if a candidate does not find s but then writes here 'limit is $40.76+2 \times$ standard deviation', do NOT award M1 (This rule of not following through variables applies in all situations) Award E0E0 if their upper limit > 200 Allow 'Must be some outliers' Allow any comments that implies that there are outliers No marks in (iv) unless using $\bar{x}+2 s$ or $\bar{x}-2 s$
(v)	New mean $=1.15 \times 40.76=46.87$ New variance $=1.15^{2} \times 33.25^{2}=1462$ For misread 1.5 in place of 1.15 For $1.5 \times 40.76=61.1$ and $1.5^{2} \times 33.25^{2}=2490$ allow SC2 if all present but SC0 otherwise	$\begin{aligned} & \hline \text { B1 FT } \\ & \text { M1A1 FT } \end{aligned}$	3	FT their mean (if given to ≥ 2 s.f.) FT their s (if given to ≥ 2 s.f.) provided their $s>0$ If RMSD found in part (i) rather than s , then FT their RMSD For new SD = 38.24 found instead of variance give M1A0 even if called variance (and FT their s) M0A0 for $1.15 \times 33.25^{2}=1271$ Allow max 4 sf in final answers Min 2 sf If candidate 'starts again' only award marks for CAO
		TOTAL	19	

$\begin{aligned} & \hline \text { Q8 } \\ & \text { (i) } \end{aligned}$	$\mathrm{E}(X)=n p=12 \times 0.2=2.4$ Do not allow subsequent rounding.	M1 for product A1 CAO	2	If wrong n used consistently throughout, allow M marks only. NB If they round to 2 , even if they have obtained 2.4 first they get M1A0. For answer of ' 2.4 or 2 if rounded up' allow M1A0 Answer of 2 without working gets M0A0. If they attempt $\mathrm{E}(X)$ by summing products $x p$ give no marks unless answer is fully correct.
(ii)	$\mathrm{X} \sim \mathrm{~B}(12,0.2)$ (A) $\quad \mathrm{P}($ Wins exactly 2$)=\binom{12}{2} \times 0.2^{2} \times 0.8^{10}=0.2835$ OR from tables $\quad 0.5583-0.2749=0.2834$	M1 $0.2^{2} \times 0.8^{10}$ M1 $\binom{12}{2} \times p^{2} q^{10}$ A1 CAO OR: M2 for $0.5583-$ 0.2749 A1 CAO	3	With $p+q=1$ Also for 66×0.004295 Allow answers within the range 0.283 to 0.284 with or without working or 0.28 to 0.283 if working shown See tables at the website http://www.mei.org.uk/files/pdf/formula_book_mf2.pd f
	(B) $\mathrm{P}($ Wins at least 2$)=1-0.2749=0.7251$	$\begin{aligned} & \text { M1 } \mathrm{P}(X \leq 1) \\ & \text { M1 1-P(X } \mathrm{X} \leq 1) \\ & \text { A1 CAO } \end{aligned}$	3	M1 0.2749 seen M1 1-0.2749 seen Allow 0.725 to 0.73 but not 0.72 . Point probability method: $\mathrm{P}(1)=12 \times 0.2 \times 0.8^{11}=0.2062, \mathrm{P}(0)=0.8^{12}=0.0687$ So $\mathrm{P}(X \leq 1)=0.2749$ gets M1 then mark as per scheme SC1 for $1-\mathrm{P}(X \leq 2)=1-0.5583=0.4417$ For misread of tables value of 0.2749 , allow 0 in (A) but MAX M1M1 in (B) For $\mathrm{P}(\mathrm{X}>1)=\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+\mathrm{P}(\mathrm{X}=4)+\ldots$ allow M1 for $0.2835+0.2362+0.1329+0.0532+0.0155$ and second M1 for $0.0033+0.0005+0.0001$ and A1 for 0.725 or better $\text { M0M0A0 for } 1-\mathrm{P}(\mathrm{X}=1)=1-0.2062=0.7938$

(iii) Let $p=$ probability that Ali wins a game
$\mathrm{H}_{0}: p=0.2$
$\mathrm{H}_{1}: p>0.2$
H_{1} has this form as Ali claims that he is better at winning games than Mark is.

EITHER Probability method:

$$
\begin{aligned}
\mathrm{P}(X \geq 7) & =1-\mathrm{P}(X \leq 6) \\
& =1-0.9133=0.0867>5 \%
\end{aligned}
$$

So not significant, so there is not enough evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that Ali is better at winning games than Mark.
Must include 'not enough evidence' or something similar for E1. 'Not enough evidence' can be seen in the either for the A mark or the E mark.
Do not allow final conclusions for E1 such as : 'there is evidence to suggest that Ali is no better at winning games than Mark' or 'Mark and Ali have equal probabilities of winning games'

B1 for definition of p in context
B1 for H_{0}
B1 for H_{1} E1

B1 for $\mathrm{P}(X \geq 7)$
B1 for 0.0867 Or 1 -
0.9133 seen

M1 for comparison with 5\% dep on B1 for 0.0867

A1 for not significant or 'accept H_{0} ' or 'cannot reject H_{0} ' or 'reject H_{1} '

E1 dep on M1A1

Do not award first B1
for poor symbolic notation such as $\mathrm{P}(X=$ 7) $=0.0867$ This comment applies to all methods

Minimum needed for B 1 is $p=$ probability that Ali wins.
Allow $p=\mathrm{P}$ (Ali wins) for B 1
Definition of p must include word probability (or chance or proportion or percentage or likelihood but NOT possibility)
Preferably as a separate comment. However can be at end of H_{0} as long as it is a clear definition ' $p=$ the probability that Ali wins a game, NOT just a sentence 'probability is 0.2 '
$\mathrm{H}_{0}: \mathrm{p}($ Ali wins $)=0.2, \mathrm{H}_{1}: \mathrm{p}($ Ali wins $)>0.2$ gets
B0B1B1Allow $\mathrm{p}=20 \%$, allow θ or π and ρ but not x
However allow any single symbol if defined
Allow $\mathrm{H}_{0}=p=0.2$, Allow $\mathrm{H}_{0}: p={ }^{2} / 10$
Do not allow $\mathrm{H}_{0}: \mathrm{P}(X=x)=0.2, \mathrm{H}_{1}: \mathrm{P}(X=x)>0.2$
Do not allow $\mathrm{H}_{0}:=0.2$, $=20 \%, \mathrm{P}(0.2), \mathrm{p}(0.2), \mathrm{p}(x)=0.2$, $x=0.2$ (unless x correctly defined as a probability)
Do not allow $\mathrm{H}_{1}: p \geq 0.2$,
Do not allow H_{0} and H_{1} reversed for B marks but can still get E1
Allow NH and AH in place of H_{0} and H_{1} For hypotheses given in words allow Maximum B0B1B1E1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.2 oe.

Zero for use of point prob $-\mathrm{P}(X=7)=0.0546$

OR Critical region method: Let $X \sim \mathrm{~B}(20,0.2)$ $\begin{aligned} & \mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)=1-0.9133=0.0867>5 \% \\ & \mathrm{P}(X \geq 8)=1-\mathrm{P}(X \leq 7)=1-0.9679=0.0321<5 \% \end{aligned}$ So critical region is $\{8,9,10,11,12,13,14,15,16,17,18,19,20\}$ 7 does not lie in the critical region, so not significant, So there is not enough evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that Ali is better at winning games than Mark.	B1 for 0.0867 B1 for 0.0321 M1 for at least one comparison with 5\% A1 CAO for critical region and not significant or 'accept H_{0} ' or 'cannot reject H_{0} ' or 'reject H_{1} ' dep on M1 and at least one B1 E1 dep on M1A1		Allow any form of statement of CR eg $X \geq 8$, 8 to 20, 8 or above, $X>8,\{8, \ldots\}$, annotated number line, etc but not $\mathrm{P}(X \geq 8)$ $\{8,9,10,11,12\}$ gets max B2M1A0 - tables stop at 8 . NB USE OF POINT PROBABILITIES gets B0B0M0A0 Use of complementary probabilities Providing there is sight of 95%, allow B1 for 0.9133, B1 for 0.9679 , M1 for comparison with 95% A1CAO for correct CR See additional notes below the scheme for other possibilities PLEASE CHECK THAT THERE IS NO EXTRA WORKING ON THE SECOND PAGE IN THE ANSWER BOOKLET
	TOTAL	17	

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified (see instruction 8), deduct the final answer mark in every case, except where there are more than two overspecified answers in a single question (only likely in question 7) in which case deduct a mark in only the first two cases of over-specification in that question. Probabilities should also be rounded to a sensible degree of accuracy.

ADDITIONAL NOTES RE Q8 PART iii

Use of $\mathbf{n}=12$
$\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)=1-0.9961=0.0039<5 \%$
So significant or reject H_{0} etc, so there evidence to suggest that Ali is better at winning games than Mark.
Gets B 1 for $\mathrm{P}(X \geq 7) \mathrm{B} 1$ for 0.0039 M 1 for comparison with 5% dep on B 1 for 0.0039 A 1 for significant E1 for evidence to suggest that Ali is better at winning games than Mark. Then award MR -1 so maximum of 4 possible

Comparison with 95\% method

B 1 for $\mathrm{P}(X \leq 6)$
B1 for 0.9133

M1 for comparison with 95\% dep on B1
A1 for not significant or 'accept H_{0} ' or 'cannot reject H_{0} '
E1

Smallest critical region method:

Either:

Smallest critical region that 7 could fall into gets B1 and has size 0.0867 gets B1, This is $>5 \%$ gets M1, A1, E1 as per scheme NB These marks only awarded if 7 used, not other values.

Use of k method with no probabilities quoted:
$\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)>5 \%$
$\mathrm{P}(X \geq 8)=1-\mathrm{P}(X \leq 7)<5 \%$
These may be seen in terms of k or n.
Either $k=8$ or $k-1=7$ so $k=8$ gets SC1
so CR is $\{8,9,10,11,12,13,14,15,16,17,18,19,20\}$ gets another SC1and conclusion gets another SC1

Use of k method with one probability quoted:
$1-0.9679<5 \%$ or $0.0321<5 \%$ gets B0B1M1
$\mathrm{P}(X \leq k-1)=\mathrm{P}(X \leq 7)$
so $k-1=7$ so $k=8$ (or just $k=8$)
so CR is $\{8,9,10,11,12,13,14,15,16,17,18,19,20\}$ and conclusion gets A1E1

Two tailed test with $\mathrm{H}_{1}: p \neq 0.2$
Hyp gets max B1B1B0E0
$\mathrm{P}(X \geq 7)=0.0867$ gets B1B1comparison with 2.5% gets M1 (must be 2.5\%)
Final marks A0E0

Two tailed test done but with correct $\mathrm{H}_{1}: p>0.2$
Hyp gets max B1B1B1E1
if compare with 5\% ignore work on lower tail and mark upper tail as per scheme so can score full marks
if compare with 2.5\% no marks B0B0MOAOE0

One tailed test with $\mathrm{H}_{1}: p<0.2$
Hyp gets max B1B1B0E0
no further marks B0B0M0A0E0

Lower tailed test with $\mathrm{H}_{1}: p>0.2$
Hyp gets max B1B1B0E0
no further marks B0B0M0A0E0

Line diagram method

B1 for squiggly line between 7 and 8 or on 8 exclusively (ie just one line), B1dep for arrow pointing to right, M1 0.0321 seen on diagram from squiggly line or from 8, A1E1 for correct conclusion

Bar chart method

B1 for line clearly on boundary between 7 and 8 or within 8 block exclusively (ie just one line),, B1dep for arrow pointing to right, M1 0.0321 seen on diagram from boundary line or from 8, A1E1 for correct conclusion

Using P(Not faulty) method
$\mathrm{H}_{0}: p=0.8, \mathrm{H}_{1}: p<0.8$, where p represents the prob that Ali loses a game Ali claims that the proportion of games that he loses is less than 80% gets B1B1B1E1
$\mathrm{P}(\mathrm{X} \leq 13)=0.0867>5 \%$ So not significant, so there is not enough evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that Ali is better at winning games than Mark. Gets B1B1M1A1E1

GCE

Mathematics (MEI)

Advanced Subsidiary GCE

Unit 4766: Statistics 1

Mark Scheme for June 2011

1. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
2. For answers scoring no marks, you must either award NR (no response) or 0, as follows:

Award NR (no response) if:

- Nothing is written at all in the answer space
- There is a comment which does not in any way relate to the question being asked ("can't do", "don't know", etc.)
- There is any sort of mark that is not an attempt at the question (a dash, a question mark, etc.)

The hash key [\#] on your keyboard will enter NR.
Award 0 if:

- There is an attempt that earns no credit. This could, for example, include the candidate copying all or some of the question, or any working that does not earn any marks, whether crossed out or not

3. The following abbreviations may be used in this mark scheme.

M1	method mark (M2, etc, is also used)
A1	accuracy mark
B1	independent mark
E1	mark for explaining
U1	mark for correct units
G1	mark for a correct feature on a graph
M1 dep*	method mark dependent on a previous mark, indicated by * cao
correct answer only	
ft	follow through
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated sc
special case	
soi	seen or implied
www	without wrong working

4. Annotating scripts. The following annotations are available:
\checkmark and \times
BOD Benefit of doubt
FT Follow through
ISW Ignore subsequent working (after correct answer obtained)
M0, M1 Method mark awarded 0, 1
A0, A1 Accuracy mark awarded 0, 1
B0, B1 Independent mark awarded 0,1
SC Special case
$\wedge \quad$ Omission sign
MR Misread
Highlighting is also available to highlight any particular points on a script.
5. The comments box will be used by the Principal Examiner to explain his or her marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts.

Please do not type in the comments box yourself. Any questions or comments you have for your Team Leader should be communicated by the scoris messaging system, e-mail or by telephone.
6. Write a brief report on the performance of the candidates. Your Team Leader will tell you when this is required. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.
7. Link Additional Objects with work relating to a question to those questions (a chain link appears by the relevant question number) - see scoris assessor Quick Reference Guide page 19-20 for instructions as to how to do this - this guide is on the Cambridge Assessment Support Portal and new users may like to download it with a shortcut on your desktop so you can open it easily! For AOs containing just formulae or rough working not attributed to a question, tick at the top to indicate seen but not linked. When you submit the script, scoris asks you to confirm that you have looked at all the additional objects. Please ensure that you have checked all Additional Objects thoroughly.
8. The schedule of dates for the marking of this paper is displayed under 'OCR Subject Specific Details’ on the Cambridge Assessment Support Portal. It is vitally important that you meet these requirements. If you experience problems that mean you may not be able to meet the deadline then you must contact your Team Leader without delay.

	SECTION A			
$\begin{aligned} & \text { Q1 } \\ & \text { (i) } \end{aligned}$	$1000 \times 0.013=13$ Or $0.2 \times 65=13$ Or $0.2 \times 5 \times 13=13$	M1 A1 M1 for 0.2×65	2	Allow with or without working For MR $1000 \times 0.13=130$ Allow M1A0 Allow M1A0 if extra terms added eg 1000×0.004 SC1 for $1000 \times 0.014=14$ For whole calculation
(ii)	Positive	B1	1	Allow +ve but NOT skewed to the right Do not allow 'positive correlation'
(iii)	$\begin{aligned} & \text { Minimum value }=1500 \\ & \text { Maximum value }=2500 \end{aligned}$	B1 Without wrong working B1 Without wrong working	2	Exact answers only unless good explanation such as eg no road has length zero so min is eg 1501 SC1 for lower answer between 1499 and 1501 and upper between 2499 and 2501 Allow answer given as inequality
		TOTAL	5	
$\begin{aligned} & \text { Q2 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Either } \mathrm{P}(\text { alphabetic order })=\frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1}=\frac{1}{120} \\ & \text { or } \mathrm{P}(\text { alphabetic order })=\frac{1}{5!}=\frac{1}{120}=0.00833 \end{aligned}$	M1 for 5 ! or 120 or ${ }^{5} \mathrm{P}_{5}$ seen or product of correct fractions A1 CAO	2	Allow 0.0083 or 1/120 but not 0.008
(ii)	$\begin{aligned} & \text { Either } \mathrm{P}(\text { picks Austen and Bronte })=\frac{2}{5} \times \frac{1}{4}=\frac{1}{10} \\ & \text { or } \mathrm{P}(\text { picks Austen and Bronte })=\frac{1}{5} \times \frac{1}{4} \times 2=\frac{1}{10} \\ & \text { or } \mathrm{P}(\text { picks Austen and Bronte })=\frac{1}{\binom{5}{2}}=\frac{1}{10} \end{aligned}$	M1 for denominators M1 for $2 \times$ dep on correct denominators A1 CAO Or M1 for $\binom{5}{2}$ or 10 M1 for $1 /\binom{5}{2}$ A1 CAO	3	$1 / 5 \mathrm{P}_{2}$ scores M1 also $1 / 20$ oe scores M1 even if followed by further incorrect working $\binom{5}{2} \text { seen as part of a binomial expression gets }$ M0M0A0
		TOTAL	5	

Q3 (i)	$\mathrm{P}(X=0)=0.75^{6}=0.178$	$\begin{aligned} & \text { M1 for } 0.75^{6} \\ & \text { A1 CAO } \\ & \hline \end{aligned}$	2	Or from tables 0.1780 Or 729/4096 Allow 0.18 with working
(ii)	$\mathrm{E}(X)=n p=50 \times 0.178=8.9$	M1 for product A1 FT	2	FT their answer to (i) providing it's a probability NB A0 if subsequently rounded
		TOTAL	4	
Q4 (i)		G1 labelled linear scales on both axes G1 heights	2	Accept r or x for horizontal label and p or better for vertical including probability distribution Visual check only Allow G1G0 for points rather than lines Bars must not be wider than gaps for second G1 Condone vertical scale 1, 2, 3, 4, 5 and Probability (\times) $1 / 18$ as label BOD for height of $r=0$ on vertical axis
(ii)	(A) If $X=1$, possible scores are $(1,2),(2,3),(3,4),(4,5),(5,6)$ and $(2,1),(3,2),(4,3),(5,4),(6,5)$ (All are equally likely) so probability $=\frac{10}{36}=\frac{5}{18}$ (B) If $X=0$, possible scores are (1,1), (2,2), (3,3), (4,4), (5,5), $(6,6)$ so probability $=\frac{6}{36}=\frac{1}{6}$	M1 A1 B1	1	Also M1 for a clear correct sample space seen with the ten 1 's identified by means of circles or ticks oe soi. Must be convincing. No additional values such as 0,1 and 1,0 Do not allow ' just 10 ways you can have a difference of 1 so $10 / 36$ ' or equivalent SC1 for possible scores are (1,2), $(2,3),(3,4),(4,5)$, $(5,6)$ so probability $=2 \times 5 \times 1 / 36$ with no explanation for $2 \times$ Also B1 for a clear correct sample space seen with the six 0 's identified by means of circles or ticks oe soi. Must be convincing. No additional values. Allow both dice must be the same so probability $=$ $6 / 36=1 / 6$. Allow $1 \times 1 / 6=1 / 6 \mathrm{BOD}$
(iii)	Mean value of $X=$ $0 \times \frac{1}{6}+1 \times \frac{5}{18}+2 \times \frac{2}{9}+3 \times \frac{1}{6}+4 \times \frac{1}{9}+5 \times \frac{1}{18}=1 \frac{17}{18}=1.94$	M1 for $\operatorname{\Sigma rp}$ (at least 3 terms correct) A1 CAO	2	Or 35/18 Division by 6 or other spurious factor gets MAX M1A0
		TOTAL	7	

Q5 (i)		G1 for two labelled intersecting circles G1 for at least 2 correct probabilities. G1 for remaining correct probabilities	3	Allow labels such as $\mathrm{P}(W)$ and $\mathrm{P}(F)$ Allow other sensible shapes in place of circles
(ii)	$\mathrm{P}(W) \times \mathrm{P}(F)=0.14 \times 0.41=0.0574 \neq \mathrm{P}(W \cap F)=0.11$ So not independent.	M1 for 0.41×0.14 A1 Condone dependent Must have full method www Must have either $\mathrm{P}(W \cap F)$ or 0.11	2	Answer of 0.574 gets Max M1A0 Omission of 0.0574 gets M1A0 Max Or: $\mathrm{P}(W \mid F)=0.11 / 0.41=0.268 \neq \mathrm{P}(W)(=0.14) \mathrm{M} 1$ for full working $\mathrm{P}(F \mid W)=0.11 / 0.14=0.786 \neq \mathrm{P}(F)(=0.41) \mathrm{M} 1$ for full working No marks without correct working
(iii)	$P(W \mid F)=\frac{P(W \cap F)}{P(F)}=\frac{0.11}{0.41}=\frac{11}{41}=0.268$ This is the probability that a randomly selected respondent works (part time), given that the respondent is female.	M1 for correct fraction A1 E1 For E1 must be in context - not just talking about events F and W	3	Allow 0.27 with working Allow $11 / 41$ as final answer Condone 'if' or 'when' for 'given that' but not the words 'and' or 'because' or 'due to' for E1. E1 (independent of M1): the order/structure must be correct i.e. no reverse statement Allow 'The probability that a randomly selected female respondent works part time' oe
		TOTAL	8	

Q6 (i)	$\begin{aligned} & \text { Mean }=\frac{1 \times 10+2 \times 40+3 \times 15+4 \times 5}{70}=\frac{155}{70}=2.214 \\ & S_{x x}= \\ & 1^{2} \times 10+2^{2} \times 40+3^{2} \times 15+4^{2} \times 5-\frac{155^{2}}{70}=385-343.21=41.79 \\ & \mathrm{~s}=\sqrt{\frac{41.79}{69}}=0.778 \end{aligned}$	M1 A1 CAO M1 for $\Sigma \mathrm{fx}^{2}$ s.o.i. M1 for attempt at $S_{x x}$ Dep on first M1 A1 CAO If 0.778 or better seen ignore previous incorrect working (calculator answer) Allow final answer to 2 sig fig (www)	5	For M1 allow sight of at least 3 double pairs seen from $1 \times 10+2 \times 40+3 \times 15+4 \times 5$ with divisor 70 . Allow answer of $155 / 70$ or 2.2 or 2.21 or $31 / 14$ oe For $155 / 70=\operatorname{eg} 2.3$, allow A1 isw M1 for $1^{2} \times 10+2^{2} \times 40+3^{2} \times 15+4^{2} \times 5$ with at least three correct terms Using exact mean leads to $\mathrm{S}_{x x}=41.79, \mathrm{~s}=0.778$, Using mean 2.214 leads to $\mathrm{S}_{x x}=41.87, \mathrm{~s}=0.779$, Using mean 2.21 leads to $\mathrm{S}_{x x}=43.11$ and $\mathrm{s}=0.790$ Using mean 2.2 leads to $\mathrm{S}_{x x}=46.2$ and $\mathrm{s}=0.818$ Using mean 2 leads to $\mathrm{S}_{x x}=105$ and $\mathrm{s}=1.233$ All the above get M1M1A1 except the last one which gets M1M1A0 $\operatorname{RMSD}($ divisor n rather than $n-1)=\sqrt{ }(41.79 / 70)=$ 0.772 gets M1M1A0 Alternative method, award M1for at least 3 terms of and second M1 for all 4 terms of $\begin{aligned} & (1-2.214)^{2} \times 10+(2-2.214)^{2} \times 40+(3-2.214)^{2} \times 15 \\ & +(4-2.214)^{2} \times 5(=41.79) \end{aligned}$ NB Allow full credit for correct answers without working (calculator used)
(ii)	Mean would decrease Standard deviation would increase	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Do not accept increase/decrease seen on their own - must be linked to mean and SD. Allow eg 'It would skew the mean towards zero' And eg ' It would stretch the SD' SC1 for justified argument that standard deviation might either increase or decrease according to number with no eggs ($n \leq 496$ increase, $n \geq 497$ decrease)
		TOTAL	7	

\begin{tabular}{|c|c|c|c|c|}
\hline \& SECTION B \& \& \& \\
\hline \[
\begin{aligned}
\& \hline \text { Q7 } \\
\& \text { (i) }
\end{aligned}
\] \& \begin{tabular}{l}
\[
X \sim \mathrm{~B}(20,0.15)
\] \\
(A) Either \(\mathrm{P}(\boldsymbol{X}=1)=\binom{20}{1} \times 0.15^{1} \times 0.85^{19}=0.1368\) \\
or
\[
\begin{aligned}
\mathrm{P}(X=1) \& =\mathrm{P}(X \leq 1)-\mathrm{P}(X \leq 0) \\
\& =0.1756-0.0388=0.1368
\end{aligned}
\] \\
(B) \(\mathrm{P}(X \geq 2)=1-\mathrm{P}(X \leq 1)\)
\[
=1-0.1756=0.8244
\]
\end{tabular} \& \begin{tabular}{l}
M1 \(0.15^{1} \times 0.85^{19}\) M1 \(\binom{20}{1} \times p^{1} q^{19}\) A1 CAO \\
OR: M2 for 0.1756 0.0388 A1 CAO \\
M1 for 1 - their 0.1756 A1 CAO
\end{tabular} \& 3

2 \& | With $p+q=1$ |
| :--- |
| Allow answer 0.137 with or without working or 0.14 if correct working shown |
| See tables at the website |
| http://www.mei.org.uk/files/pdf/formula_book_mf2.pdf |
| For misread of tables $0.3917-0.1216=0.2701$ allow |
| M1M1A0 also for $0.1304-0.0261=0.1043$ |
| Provided 0.1756 comes from $\mathrm{P}(X=0)+\mathrm{P}(X=1)$ |
| Allow answer 0.824 with or without working or 0.82 if correct working shown |
| Point probability method: $\mathrm{P}(1)=0.1368, \mathrm{P}(0)=0.0388$ |
| So 1 - $\mathrm{P}(X \leq 1)=1-0.1756$ gets M1 then mark as per scheme $\text { M0A0 for } 1-\mathrm{P}(X \leq 1)=1-0.4049=0.5951$ |
| For misread of tables $1-0.3917=0.6083$ allow M1A1 also for $1-0.1304=0.8696$ provided consistent with part (A) OR M1A0 if formula used in part (A) |

\hline \& \& \& \&

\hline
\end{tabular}

(ii)	Let $X \sim \mathrm{~B}(n, p)$ Let $p=$ probability of a 'no-show' (for population) $\mathrm{H}_{0}: p=0.15$ $\mathrm{H}_{1}: p<0.15$	B1 for definition of p H_{1} has this form because the hospital management hopes to reduce the proportion of no-shows. B1 for H_{1}	E1 Allow correct answer even if H_{1} wrong	(

	Note: use of critical region method scores M1 for region $\{0\}$ M1 for 1 does not lie in critical region, then A1 E1 as per scheme	E1 dep for conclusion in context.		M2 then A1E1 as per scheme Line diagram method M1 for squiggly line between 0 and 1 with arrow pointing to left, M1 0.0388 seen on diagram from squiggly line or from 0 , A1E1 for correct conclusion Bar chart method M1 for line clearly on boundary between 0 and 1 and arrow pointing to left, M1 0.0388 seen on diagram from boundary line or from 0 , A1E1 for correct conclusion
(iv)	$6<8$ So there is sufficient evidence to reject H_{0} Conclude that there is enough evidence to indicate that the proportion of no-shows appears to have decreased.	M1 for comparison seen A1 E1 for conclusion in context	3	Allow ' 6 lies in the CR' Do NOT insist on 'not enough evidence' here Do not FT wrong H_{1} : $\mathrm{p}>0.15$ but may get M1 In part (iv) ignore any interchanged H_{0} and H_{1} seen in part (ii)
(v)	For $n \leq 18, \mathrm{P}(X \leq 0)>0.05$ so the critical region is empty.	E1 for $\mathrm{P}(X \leq 0)>0.05$ E1 indep for critical region is empty	2	E1 also for sight of 0.0536 Condone $\mathrm{P}(X=0)>0.05$ or all probabilities or values, (but not outcomes) in table (for $n \leq 18$) >0.05 Or 'There is no critical region' For second E1 accept ' H_{0} would always be accepted' Do NOT FT wrong H_{1} Use professional judgement - allow other convincing answers
		TOTAL	18	

	$\mathrm{Q} 1=9.51 \quad \mathrm{Q} 3=9.83$ Inter-quartile range $=9.83-9.51=0.32$	B1 FT for Q3 or Q1 B1 FT for IQR providing both Q1 and Q3 are correct Allow answers between 9.50 and 9.52 and between 9.82 and 9.84 without checking curve. Otherwise check curve.		Based on $12^{\text {th }}$ to $13^{\text {th }}$ and $37^{\text {th }}$ to $38^{\text {th }}$ values on a cumulative frequency graph ft their mid -point plot (not LCB’s) approx Q1 = 9.42; Q3 $=9.73$ Allow 9.41 to 9.43 and 9.72 to 9.74 without checking B0 for interpolation Allow correct IQR from graph if quartiles not stated Lines of best fit: B0 B0 B0 here.
(iii)	Lower limit $9.51-1.5 \times 0.32=9.03$ Upper limit $9.83+1.5 \times 0.32=10.31$ Thus there are no outliers in the sample.	B1 FT their $\mathrm{Q}_{1}, \mathrm{IQR}$ B1 FT their Q_{3}, IQR E1 NB E mark dep on both B marks	3	Any use of median $\pm 1.5 \mathrm{IQR}$ scores B0 B0 E0 If FT leads to limits above 9.1 or below 10.1 then E0 No marks for ± 2 or 3 IQR In this part FT their values from (ii) if sensibly obtained (eg from LCB plot) or lines of best fit, but not from location ie 12.5, 37.5 or cumulative fx's or similar. For use of mean $\pm 2 \mathrm{~s}$, Mean $=9.652, \mathrm{~s}=0.235$, Limits 9.182, 10.122 gets M1 for correct lower limit, M1 for correct upper limit, zero otherwise, but E0 since there could be outliers using this definition
(iv)	(A) $\mathrm{P}($ All 3 more than 9.5$)=\frac{38}{50} \times \frac{37}{49} \times \frac{36}{48}=0.4304$ $(=50616 / 117600=2109 / 4900)$	M1 for 38/50 \times (triple product) M1 for product of remaining fractions A1 CAO	3	$(38 / 50)^{3}$ which gives answer 0.4389 scores M1M0A0 so watch for this. M0M0A0 for binomial probability including 0.76^{100} but ${ }^{3} \mathrm{C}_{0} \times 0.24^{0} \times 0.76^{3}$ still scores M1 $(k / 50)^{3}$ for values of k other than 38 scores M0M0A0 $\frac{k}{50} \times \frac{(k-1)}{49} \times \frac{(k-2)}{48}$ for values of k other than 38 scores M1M0A0 Correct working but then multiplied or divided by some factor scores M1M0A0

$\text { (B) } \begin{aligned} & \mathrm{P}(\text { At least } 2 \text { more than } 9.5)=3 \times \frac{38}{50} \times \frac{37}{49} \times \frac{12}{48}+0.4304 \\ &=3 \times 0.1435+0.4304 \\ &=0.4304+0.4304 \\ &=0.861 \\ &(=101232 / 117600=4218 / 4900=2109 / 2450) \end{aligned}$ OR $\mathrm{P}(\text { At least } 2 \text { more than } 9.5)=1-(\mathrm{P}(0)+\mathrm{P}(1))$ $\begin{aligned} & =1-\left[\left(\frac{12}{50} \times \frac{11}{49} \times \frac{10}{48}\right)+\left(3 \times \frac{12}{50} \times \frac{11}{49} \times \frac{38}{48}\right)\right] \\ & =1-[0.01122+0.12796]=1-0.13918=0.861 \end{aligned}$	M1 for product of 3 correct fractions seen M1 for $3 \times$ a sensible triple or sum of 3 sensible triples M1 indep for +0.4304 FT (providing it is a probability) A1 CAO M1 for $12 / 50 \times 11 / 49 \times 38 / 48$ M1 for $3 \times$ a sensible triple or sum of 3 sensible triples M1 dep on both previous M1's for $1-[0.01122+0.12796]$ A1 CAO	4	Accept 0.43 with working and 0.430 without working Or $\binom{38}{3},\binom{50}{3}=2109 / 4900=0.4304$ Allow unsimplified fraction as final answer 50616/117600 Or $\binom{38}{2}\binom{12}{1},\binom{50}{3}=0.4304$ gets first two M1M1’s SC1 for $3 \times \frac{38}{50} \times \frac{38}{50} \times \frac{12}{50}$ or other sensible triple and SC2 if this + their $0.4304(=0.8549)$ Allow 0.86 or $2109 / 2450$ or $4218 / 4900$, but only M3A0 for other unsimplified fractions Use of 1 - method 'with replacement' SC1 for $3 \times \frac{12}{50} \times \frac{12}{50} \times \frac{38}{50}$ SC2 for whole of $1-3 \times \frac{12}{50} \times \frac{12}{50} \times \frac{38}{50}+\frac{12}{50} \times \frac{12}{50} \times \frac{12}{50}$ $(=1-(0.1313+0.0138)=1-0.1451=0.8549)$
	TOTAL	18	

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified (see instruction 8), deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig. In general accept answers which are correct to 3 significant figures when given to 4 or 5 significant figures.

Question		Answer	Marks	Guidance	
		$\begin{aligned} & =3 \times \frac{30}{50} \times \frac{29}{49} \times \frac{20}{48}+3 \times \frac{20}{50} \times \frac{19}{49} \times \frac{30}{48} \\ & =3 \times 0.1480+3 \times 0.0969=0.7347 \\ & \text { OR }\binom{30}{2} \times\binom{ 20}{1},\binom{50}{3} \text { or }\binom{30}{1} \times\binom{ 20}{2},\binom{50}{3} \end{aligned}$	(M1) (A1) (M1) (M1) (A1)	For sum of both or for $3 \times$ either CAO For sum of both CAO	NB M2 also for $\frac{30}{50} \times \frac{20}{49}\left(\times \frac{48}{48}\right)$ even if not multiplied by 3 Allow 0.73 or better with working
2	(i)	${ }^{9} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{3}=84 \times 10=840$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	For either ${ }^{9} \mathrm{C}_{3}$ or ${ }^{5} \mathrm{C}_{3}$ For product of both correct combinations CAO	Zero for permutations
2	(ii)	Total number of ways of answering 6 from 14 is ${ }^{14} \mathrm{C}_{6}=3003$ $\text { Probability }=\frac{840}{3003}=\frac{40}{143}=0.27972=0.280$ OR ${ }^{6} \mathrm{C}_{3} \times 5 / 14 \times 4 / 13 \times 3 / 12 \times 9 / 11 \times 8 / 10 \times 7 / 9=0.280$	M1 M1 A1 [3] (M1) (M1) (A1)	For ${ }^{14} \mathrm{C}_{6}$ seen in part (ii) For their 840/ 3003 or their $840 /{ }^{14} \mathrm{C}_{6}$ FT their 840 For product of fractions For ${ }^{6} \mathrm{C}_{3} \times$ correct product	Allow full marks for unsimplified fractional answers $\begin{aligned} & \mathrm{SC} 1 \text { for }{ }^{6} \mathrm{C}_{3} \times(5 / 14)^{3} \times(9 / 14)^{3}= \\ & 0.2420 \end{aligned}$

Question			Answer	Marks	Guidance	
4	(i)	(A)	$\begin{aligned} & \mathrm{P}(\text { third selected })=0.92^{2} \times 0.08=0.0677 \\ & \text { Or }=1058 / 15625 \end{aligned}$	M1 M1 A1 [3]	For 0.92^{2} For $p^{2} \times q$ CAO SC1 for 'without $=0.0690$	With $p+q=1$ With no extra terms Allow 0.068 but not 0.067 nor 0.07 nt' method $92 / 100 \times 91 / 99 \times 8 / 98$
4	(i)	(B)	$\begin{aligned} & \mathrm{P} \text { (second) }+\mathrm{P} \text { (third) } \\ & =(0.92 \times 0.08)+\left(0.92^{2} \times 0.08\right) \\ & =0.0736+0.0677=0.1413 \\ & =2208 / 15625 \end{aligned}$	M1 A1 [2]	For 0.92×0.08 FT their 0.0677 SC1 for answer of	With no extra terms Allow 0.141 to 0.142 and allow 0.14 with working m 'without replacement' method
4	(ii)		$\mathrm{P}(\text { At least one of first } 20)=1-\mathrm{P}(\text { None of first } 20)$	M1	0.92^{20}	Accept answer of 0.81 or better from $\mathrm{P}(1)+\mathrm{P}(2)+\ldots$, or SC2 if all correct working shown but wrong answer No marks for 'without replacement' method'
			$=1-0.92^{20}=1-0.1887=0.8113$	M1 A1 [3]	$1-0.92^{20}$ CAO	Allow 0.81 with working but not 0.812

Question		Answer	Marks	Guidance	
5		Let $p=$ probability that a randomly selected frame is faulty	B1	For definition of p in cont Minimum needed for B1 faulty. Do not allow is p Allow $p=\mathrm{P}($ frame faulty Definition of p must inclu proportion or percentage or Preferably as a separate co H_{0} as long as it is a clear d frame is faulty, NOT just Do NOT allow ' $p=$ the pr increased’	$p=$ probability that frame/bike is probability that it is faulty word probability (or chance or likelihood but NOT possibility). mment. However can be at end of finition ' $p=$ the probability that sentence 'probability is 0.05 ' bability that faulty frames have
		$\mathrm{H}_{0}: p=0.05$	B1	$\mathrm{H}_{0}: \mathrm{p}($ frame faulty $)=0.05$ B0B1B1 Allow $\mathrm{p}=5 \%$, allow θ or π any single symbol if defin Allow $\mathrm{H}_{0}=p=0.05$, Allow Do not allow $\mathrm{H}_{0}: \mathrm{P}(X=x)$ Do not allow H_{0} : $=0.05$, $=$ $x=0.05$ (unless x correctly Do not allow $\mathrm{H}_{1}: p \geq 0.05$, Do not allow H_{0} and H_{1} re Allow NH and AH in plac For hypotheses given in w Hypotheses in words must proportion or percentage)	$\mathrm{H}_{1}: \mathrm{p}(\text { frame faulty })>0.05 \text { gets }$ and ρ but not x. However allow d $\mathrm{H}_{0}: p=1 / 20$ $0.05, \mathrm{H}_{1}: \mathrm{P}(X=x)>0.05$ $\%, \mathrm{P}(0.05), \mathrm{p}(0052), \mathrm{p}(x)=0.05$ lefined as a probability) ersed of H_{0} and H_{1} rds allow Maximum B0B1B1 include probability (or chance or and the figure 0.05 oe.
		$\begin{aligned} & \mathrm{H}_{1}: p>0.05 \\ & \mathrm{P}(X \geq 4) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	For notation $\mathrm{P}(X \geq 4)$ or 1- $\mathrm{P}(X \leq 3)$ This mark may be implied by 0.0109 as long as no incorrect notation.	No further marks if point probs used - $\mathrm{P}(X=4)=0.0094$ DO NOT FT wrong H_{1} But if H_{1} is $p \geq 0.05$ allow the rest of the marks if earned so max 7/8
		$=1-\mathrm{P}(X \leq 3)=1-0.9891=0.0109$	B1*	For 0.0109, indep of previous mark	Or for $1-0.9891$

Question		Answer	Marks	Guidance
			G1(H1) [5]	Height of bars FT of heights dep on at least 3 heights correct and all must agree with their fds If fds not given and one height is wrong then max M1A0G1G1G0 - visual check only (within one square) -no need to measure precisely
6	(ii)	Do not know exact highest and lowest values so cannot tell what the midrange is. OR No and a counterexample to show it may not be 2750 OR $\overline{(500}+5000) / 2=2750$. But very unlikely to be absolutely correct but probably close to the true value. Some element of doubt needed. Allow 'Likely to be correct'	E1	Allow comment such as 'Highest value could be 5000 and lowest could be 500 therefore midrange could be 2750' NO mark if incorrect calculation Sight of 1750 AND 3000 (min and max of midrange) scores E1
6	(iii)	$\begin{aligned} & \text { Mean = } \\ & \frac{(750 \times 7)+(1250 \times 22)+(1750 \times 26)+(2500 \times 18)+(4000 \times 7)}{80} \\ & =\frac{151250}{80}=1891 \\ & \begin{array}{c} \\ 2 \end{array} f=\left(750^{2} \times 7\right)+\left(1250^{2} \times 22\right)+\left(1750^{2} \times 26\right)+\left(2500^{2} \times 18\right)+\left(4000^{2} \times 7\right) \\ & =3937500+34375000+79625000+112500000+112000000 \\ & =342437500 \\ & S x x=342437500-\frac{151250^{2}}{80}=56480469 \\ & s=\sqrt{\frac{56480469}{79}}=\sqrt{714943}=846 \end{aligned}$ Only an estimate since the data are grouped.	M1 A1 M1 A1 E1 indep [5]	For midpoints (at least 3 correct) No marks for mean or sd unless using midpoints Answer must NOT be left as improper fraction CAO Accept correct answers for mean (1890 or 1891) and sd (850 or 846 or 845.5) from calculator even if eg wrong $S_{x x}$ given For sum of at least 3 correct multiples $f x^{2}$ Allow M1 for anything which rounds to 342400000 Only penalise once in part (iii) for over specification, even if mean and standard deviation both over specified. Allow SC1 for RMSD 840.2 or 840 from calculator Or for any mention of midpoints or 'don't have actual data' or 'data are not exact' oe

Question		Answer	Marks	Guidance
6	(iv)	$\bar{x}-2 s=1891-(2 \times 846)=199$ Allow 200 $\bar{x}+2 s=1891+(2 \times 846)=3583$ Allow 3580 or 3600 So there are probably some outliers	M1 A1 E1 [3]	For either. FT any positive mean and their positive $\mathrm{sd} / \mathrm{rmsd}$ for M1 Only follow through numerical values, not variables such as s, so if a candidate does not find s but then writes here 'limit is $40.76+2 \times$ standard deviation', do NOT award M1 No marks in (iv) unless using $\bar{X}+2 s$ or $\bar{X}-2 s$ For both (FT) Do NOT penalise over specification here as it is not the final answer Must include an element of doubt Dep on upper limit in range 3000 - 5000 Allow comments such as 'any value over 3583 is an outlier' Ignore comments about possible outliers at lower end.
6	(v)	Number of cars over $2000 \mathrm{~cm}^{3}=25 / 80 \times 2.5$ million $=781250$ So duty raised $=781250 \times £ 1000=£ 781$ million	M1 M1 indep A1 [3]	For $25 / 80 \times 2.5$ million or $(18+7) / 80 \times 2.5$ million For something $\times £ 1000$ even if this is the first step CAO NB $£ 781250000$ is over specified so only $2 / 3$
6	(vi)	Because the numbers of cars sold with engine size greater than 2000 cm^{3} might be reduced due to the additional duty.	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	Allow any other reasonable suggestion Condone 'sample may not be representative' Allow 'sample is not of NEW cars'

	uest		Answer	Marks	Guidance
7	(i)		$\mathrm{P}(X=0)=0.4 \times 0.5^{4}=0.025 \quad$ NB ANSWER GIVEN	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { [2] } \\ \hline \end{gathered}$	For 0.5 ${ }^{4}$
7	(ii)		$\begin{aligned} & \mathrm{P}(X=1)=\left(0.6 \times 0.5^{4}\right)+\left(4 \times 0.4 \times 0.5 \times 0.5^{3}\right) \\ & =0.0375+0.1=0.1375 \quad \text { NB ANSWER GIVEN } \end{aligned}$	M1* M1* M1* dep A1 [4]	For 0.6×0.5^{4} seen as a single term (not multiplied or divided by anything) For $4 \times 0.4 \times 0.5^{4}$ Allow 4×0.025 Watch out for incorrect methods such as (0.4/4) 0.1 MUST be justified For sum of both, dep on both M1's
7	(iii)			G1 G1 [2]	For labelled linear scales on both axes Dep on attempt at vertical line chart. Accept P on vertical axis For heights - visual check only but last bar taller than first and fifth taller than second and fourth taller than third. Lines must be thin (gap width > line width). All correct. Zero if vertical scale not linear Everything correct but joined up tops G0G1 MAX Everything correct but f poly G0G1 MAX Everything correct but bar chart G0G1 MAX Curve only (no vertical lines) gets G0G0 Best fit line G0G0 Allow transposed diagram

Question		Answer	Marks	Guidance
7	(iv)	'Negative' or 'very slight negative'	$\begin{aligned} & \text { E1 } \\ & \text { [1] } \end{aligned}$	E0 for symmetrical but E1 for (very slight) negative skewness even if also mention symmetrical Ignore any reference to unimodal
7	(v)	$\begin{aligned} & \mathrm{E}(X)=(0 \times 0.025)+(1 \times 0.1375)+(2 \times 0.3)+(3 \times 0.325)+(4 \times 0.175) \\ & +(5 \times 0.0375) \\ & \quad=2.6 \\ & \left.\mathrm{E}\left(X^{2}\right)=(0 \times 0.025)+(1 \times 0.1375)+(4 \times 0.3)+(9 \times 0.325)+16 \times 0.175\right) \\ & +(25 \times 0.0375)=0+0.1375+1.2+2.925+2.8+0.9375=8 \\ & \operatorname{Var}(X)=8-2.6^{2} \\ & \quad=1.24 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1* } \\ \text { M1* } \\ \text { dep } \\ \text { A1 } \\ \text { [5] } \end{gathered}$	For $\Sigma r p$ (at least 3 terms correct) CAO For $\Sigma r^{2} p$ (at least 3 terms correct) for - their $E(X)^{2}$ FT their $E(X)$ provided $\operatorname{Var}(X)>0$ USE of $E(X-\mu)^{2}$ gets M1 for attempt at $(x-\mu)^{2}$ should see (-$2.6)^{2},(-1.6)^{2},(-0.6)^{2}, 0.4^{2}, 1.4^{2}, 2.4^{2}$ (if $\mathrm{E}(X)$ correct but FT their $\mathrm{E}(X)$) (all 5 correct for M1), then M1 for $\Sigma \mathrm{p}(x-\mu)^{2}$ (at least 3 terms correct) Division by 5 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $\mathrm{E}(X)$ also divided by 5. Unsupported correct answers get 5 marks.
7	(vi)	$\begin{aligned} & \mathrm{P}(\text { Total of } 3)=\left(3 \times 0.325 \times 0.025^{2}\right)+(6 \times 0.3 \times 0.1375 \times 0.025)+ \\ & 0.1375^{3}=3 \times 0.000203+6 \times 0.001031+0.002600= \\ & 0.000609+0.006188+0.002600=0.00940 \\ & (=3 \times 13 / 64000+6 \times 33 / 32000+1331 / 512000) \end{aligned}$	M1 M1 M1 A1 [4]	For decimal part of first term 0.325×0.025^{2} For decimal part of second term $0.3 \times 0.1375 \times 0.025$ For third term - ignore extra coefficient All M marks above depend on triple probability products CAO: AWRT 0.0094 . Allow 0.009 with working.

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified, deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig. In general accept answers which are correct to 3 significant figures when given to 4 or 5 significant figures.
If answer given as a fraction and as an over-specified decimal - ignore decimal and mark fraction.

ADDITIONAL NOTES RE Q5

Comparison with 95\% method
If 95% seen anywhere then
B1 for $\mathrm{P}(X \leq 3)$
B1 for 0.9891
M1* for comparison with 95\% dep on B1
A1* for significant oe
E1*
Smallest critical region method:
Either:
Smallest critical region that 4 could fall into is $\{4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$ gets B1 and has size 0.0109 gets B1, This is $<5 \%$ gets M1*, A1*, E1* as per scheme
NB These marks only awarded if 4 used, not other values.
Use of k method with no probabilities quoted:
$\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)>5 \%$
$\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)<5 \%$
These may be seen in terms of k or n.
Either $k=4$ or $k-1=3$ so $k=4$ gets SC1
so CR is $\{4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$ gets another SC1and conclusion gets another SC1

Use of k method with one probability quoted:
$1-0.9891<5 \%$ or $0.0109<5 \%$ gets B0B1M1
$\mathrm{P}(X \leq k-1)=\mathrm{P}(X \leq 3)$
so $k-1=3$ so $k=4$ (or just $k=8$)
so CR is $\{4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$ and conclusion gets A1E1

Two tailed test done but with correct $\mathrm{H}_{1}: p>0.05$

Hyp gets max B1B1B1

if compare with 5\% ignore work on lower tail and mark upper tail as per scheme but withhold A1E1
if compare with 2.5\% no marks B0B0M0A0E0
Line diagram method
B1 for squiggly line between 3 and 4 or on 4 exclusively (ie just one line), B1dep for arrow pointing to right, M1 0.0109 seen on diagram from squiggly line or from 4, A1E1 for correct conclusion

Bar chart method
B1 for line clearly on boundary between 3 and 4 or within 4 block exclusively (ie just one line), B1dep for arrow pointing to right, M1 0.0109 seen on diagram from boundary line or from 8, A1E1 for correct conclusion.

Using P (Not faulty) method
$\mathrm{H}_{0}: p=0.95, \mathrm{H}_{1}: p<0.95$ where p represents the prob that a frame is faulty gets B 1 B 1 B 1 .
$\mathrm{P}(\mathrm{X} \leq 14)=0.0109<5 \%$ So significant, etc gets B1B1M1A1E1

NB

If $\mathrm{H}_{0}: p=0.5, \mathrm{H}_{1}: p>0.5$, etc seen, but then revert to 0.05 in working allow marks for correct subsequent working. However if 0.5 used consistently throughout, then max B1 for definition of p and possibly B1 for notation $\mathrm{P}(X \geq 4)$.

	uesti	Answer					Marks		Guidance
1	(i)	Positive					$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	CAO	
1	(ii)	Mean =5.064 allow 5.1 with working $126.6 / 25$ or 5.06 without SD $=1.324$ allow 1.3 with working or 1.32 without					B1 B2 [3]	Allow B1 for RMSD = 1.297 or var $=1.753$ or MSD $=1.683$	Also allow B1 for Sxx $=42.08$ or for $\Sigma x^{2}=683$ SC1 for both mean $=50.64$ and $\mathrm{SD}=$ 13.24 (even if over-specified)
1	(iii)	$\bar{x}-2 s=5$ $\bar{x}+2 s=5$ So there is	-	$24=$			B1FT M1 A1FT E1 [4]	FT their mean and sd for $\bar{X}+2 s$ but withhold final E mark if their limits mean that there are no outliers. For upper limit Incorrect statement such as 7.6 and 8.1 are outliers gets E0 Do not award E1 if calculation error in upper limit	For use of quartiles and IQR $\mathrm{Q}_{1}=3.95 ; \mathrm{Q}_{3}=6.0 ; \mathrm{IQR}=2.05$ 3.95 - 1.5(2.05) gets M1 Allow other sensible definitions of quartiles $6.0+1.5(2.05) \text { gets M1 }$ Limits 0.875 and 9.075 So there are no outliers NB do not penalise over-specification here as not the final answer but just used for comparison. FT from SC1
2	(i)	$\begin{array}{\|c\|} \hline r \\ \hline \mathrm{P}(X=r) \\ 3 k+8 k+1 \\ k=0.02 \end{array}$	$\begin{array}{r} 2 \\ \hline 3 k \\ +24 \end{array}$	3	4	$\begin{array}{\|c\|} \hline 5 \\ \hline 24 k \\ \hline \end{array}$	B1 M1 A1 [3]	For correct table (ito k or correct probabilities 0.06, $0.16,0.30,0.48$) or $k=1 / 50$ (with or without working)	For their four multiples of k added and $=1$. Allow M1A1 even if done in part (ii) - link part (ii) to part (i)

Question		Answer	Marks		Guidance
2	(ii)	$\mathrm{E}(X)=(2 \times 0.06)+(3 \times 0.16)+(4 \times 0.30)+(5 \times 0.48)=4.2$ or $21 / 5$ $\begin{aligned} & \mathrm{E}\left(X^{2}\right)=(4 \times 0.06)+(9 \times 0.16)+(16 \times 0.30)+(25 \times 0.48)=18.48 \\ & \operatorname{Var}(X)=18.48-4.2^{2} \\ & =0.84=21 / 25 \end{aligned}$	M1 A1 M1 M1 A1 [5]	For $\Sigma r p$ (at least 3 terms correct Provided 4 reasonable probabilities seen. cao For $\Sigma r^{2} p$ (at least 3 terms correct) dep for - their $\mathrm{E}(X)^{2}$ FT their $\mathrm{E}(X)$ provided $\operatorname{Var}(X)>0$ (and of course $\mathrm{E}\left(X^{2}\right)$ is correct)	If probs wrong but sum $=1$ allow full marks here. If sum $\neq 1$ allow max M1A0M1 M0A0 (provided all probabilities between 0 and 1) Or ito k NB $\mathrm{E}(X)=210 k, \mathrm{E}\left(X^{2}\right)=924 k$ gets M1A0M1M0A0. $\mathrm{E}(X)=210 k, \operatorname{Var}(X)=924 k-(210 k)^{2}$ gets M1A0M1M1A0. Use of $\mathrm{E}(X-\mu)^{2}$ gets M1 for attempt at $(x-\mu)^{2}$ should see $(-2.2)^{2},(-1.2)^{2}$, $(-0.2)^{2}, 0.8^{2}$, (if $\mathrm{E}(X)$ wrong FT their $\mathrm{E}(X)$) (all 4 correct for M1), then M1 for $\Sigma p(x-\mu)^{2}$ (at least 3 terms correct with their probabilities) Division by 4 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $\mathrm{E}(X)$ also divided by 4 . Unsupported correct answers get 5 marks
3	(i)	$P(L \cap W)=P(L \mid W) \times P(W)=0.4 \times 0.07=0.028$	M1 A1 [2]	For $P(L \mid W) \times P(W)$ cao	

Question		Answer	Marks		Guidance
4	(ii)	$\frac{\binom{5}{2} \times\binom{ 6}{1}}{\binom{11}{3}}+\frac{\binom{5}{3} \times\binom{ 6}{0}}{\binom{11}{3}}=\frac{60}{165}+\frac{10}{165}=\frac{70}{165}=\frac{14}{33}=0.424$ Alternative $\begin{aligned} 1 & -\mathrm{P}(1 \text { or } 0)=1-3 \times \frac{5}{11} \times \frac{6}{10} \times \frac{5}{9}-\frac{6}{11} \times \frac{5}{10} \times \frac{4}{9} \\ & =1-\frac{5}{11}-\frac{4}{33}=\frac{14}{33} \end{aligned}$ M1 for $1-\mathrm{P}(1$ or 0$)$, M1 for first product, M 1 for $\times 3$, M1 for second product, A1	M1 M1 M1 M1 A1 [5]	For intention to add correct two fractional terms For numerator of first term For numerator of sec term Do not penalise omission of $\binom{6}{0}$ For correct denominator cao	Or For attempt at correct two terms For prod of 3 correct fractions $=4 / 33$ For whole expression ie $3 \times \frac{5}{11} \times \frac{4}{10} \times \frac{6}{9}\left(=\frac{4}{11}\right)(=3 \times 0.1212 \ldots)$ For attempt at $\frac{5}{11} \times \frac{4}{10} \times \frac{3}{9}\left(=\frac{2}{33}\right)$ cao Use of binomial can get max first M1
5	(i)	$\left(\frac{5}{6}\right)^{2} \times \frac{1}{6}=\frac{25}{216}(=0.116)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For 5/6 (or $1-1 / 6$) seen For whole product cao	If extra term or whole number factor present give M1M0A0 Allow 0.12 with working
5	(ii)	$1-\left(\frac{5}{6}\right)^{10}=1-0.1615=0.8385$	M1 A1 [2]	For $(5 / 6)^{10}$ (without extra terms) cao	Allow 0.838 or 0.839 without working and 0.84 with working. For addition $\mathrm{P}(X=1)+\ldots+\mathrm{P}(X=10)$ give M1A1 for 0.84 or better, otherwise M0A0

Question		Answer	Marks M1 A1 [2]	Guidance	
6	(i)	$4+1 / 2$ of $18=4+9=13$		$\begin{aligned} & \text { For } 1 / 2 \text { of } 18 \\ & \text { cao } \end{aligned}$	13/100 gets M1A0
6	(ii)	$\begin{aligned} & (\text { Median })=50.5^{\text {th }} \text { value } \\ & \text { Est }=140+\left(\frac{25.5}{29}\right) \times 5 \text { or }=140+\left(\frac{50.5-25}{54-25}\right) \times 5 \\ & =144.4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	For 50.5 seen For attempt to find this value	SC2 for use of $50^{\text {th }}$ value leading to Est $=140+(25 / 29 \times 5)=144.3$ (SC1 if over-specified) or Est $=145-\left(\frac{3.5}{29}\right) \times 5=144.4$ NB no marks for mean $=144.35$ NB Watch for over-specification

Question		Answer						Marks	Guidance fds If fds not given and at least 3 heights correct then max M1A0G1W1H0 Allow restart with correct heights if given fd wrong (for last three marks only)	
								[5]		
6	(iv)	4 boys 0.6×15 $\text { = } 9 \text { girls }$ So 5 more gi						$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For 0.6×15 For 9 girls cao	Or $45 \times 0.2=9$ (number of squares and 0.2 per square)
6	(v)	Frequencies So mean $=$ $\underline{(132.5 \times 18)+}$ $\begin{aligned} & =\underline{(2385)+(32} \\ & =146.9 \\ & \text { (Exact answe } \end{aligned}$		ints for 142.5 23 $+(147.5 x$ 100 $572.5)+$ 100 $)$	girls are 147.5 31 $\times 31)+($ $2945)+1$	155 19 $\times 19)$ 07.5)	167.5 9$167.5 \times 9)$	B1 M1 M1* Dep on M1 A1	For at least three frequencies correct At least three midpoints correct For attempt at $\sum x f$ For division by 100 Cao NB Watch for overspecification	No further marks if not using midpoints For sight of at least $3 x f$ pairs Allow answer 146.9 or 147 but not 150 NB Accept answers seen without working (from calculator) Use of 'not quite right' midpoints such as 132.49 or 132.51 etc can get B1B0M1M1A0

Question			Answer	Marks		Guidance
7	(i)	(A)	$\begin{aligned} & X \sim \mathrm{~B}(10,0.35) \\ & \mathrm{P}(5 \text { accessing internet })=\binom{10}{5} \times 0.35^{5} \times 0.65^{5} \\ & =0.1536 \end{aligned}$ OR from tables $=0.9051-0.7515=0.1536$	M1 M1 A1 OR M2 A1 [3]	or $0.35^{5} \times 0.65^{5}$ For $\binom{10}{5} \times p^{5} \times q^{5}$ cao For $0.9051-0.7515$ cao	With $p+\boldsymbol{q}=\mathbf{1}$ Also for 252×0.0006094 Allow 0.15 or better NB 0.153 gets A0 See tables at the website http://www.mei.org.uk/files/pdf/formu la_book_mf2.pdf
7	(i)	(B)	$\begin{aligned} & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4) \\ & =1-0.7515 \\ & =0.2485 \end{aligned}$	M1 A1 [2]	$\text { For } 0.7515$ cao	Accept 0.25 or better - allow 0.248 or 0.249 Calculation of individual probabilities gets B2 if fully correct 0.25 or better, otherwise B0.
7	(i)	(C)	$\begin{aligned} & \mathrm{E}(X)=n p=10 \times 0.35 \\ & =3.5 \end{aligned}$	M1 A1 [2]	For 10×0.35 cao	If any indication of rounding to 3 or 4 allow M1A0

Question		Answer	Marks	Guidance	
7	(ii)	Let $X \sim \mathrm{~B}(20,0.35)$ Let $p=$ probability of a customer using the internet (for population)	B1	For definition of p in context	Minimum needed for B 1 is $\mathrm{p}=$ probability of using internet. Allow $\mathrm{p}=\mathrm{P}$ (using internet) Definition of p must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H_{0} as long as it is a clear definition ' $p=$ the probability of using internet', Do NOT allow 'p = the probability of using internet is different'
		$\mathrm{H}_{0}: p=0.35$	B1	For H_{0}	Allow $\mathrm{p}=35 \%$, allow only p or θ or π or ρ. However allow any single symbol if defined (including x) Allow $\mathrm{H}_{0}=p=0.35$, Allow H_{0} : $p=7 / 20$ or $p={ }^{35} / 100$ Allow NH and AH in place of H_{0} and H_{1} Do not allow $\mathrm{H}_{0}: \mathrm{P}(X=x)=0.35$ Do not allow H_{0} : $=0.35$, $=35 \%$, $\mathrm{P}(0.35), \mathrm{p}(x)=0.35, x=0.35$ (unless x correctly defined as a probability) Do not allow H_{0} and H_{1} reversed For hypotheses given in words allow Maximum B0B1B1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.35 oe Thus eg $\mathrm{H}_{0}: \mathrm{p}$ (using internet) $=0.35$, $\mathrm{H}_{1}: \mathrm{p}$ (using internet) $\neq 0.35$ gets B0B1B1

APPENDIX

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified, deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non-probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig.

Additional notes re Q7 part ii

Comparison with 97.5% method
If 97.5% seen anywhere then
B 1 for $\mathrm{P}(X \leq 9)$
B1 for 0.8782
M1* for comparison with 97.5% dep on second B1
A1* for not significant oe
E1*

Smallest critical region method:
Smallest critical region that 10 could fall into is $\{10,11,12,13,14,15,16,17,18,19,20\}$ gets $\mathbf{B 1}$ and has size $\mathbf{0 . 1 2 1 8}$ gets $\mathbf{B 1}$, This is $>\mathbf{2 . 5 \%}$ gets $\mathbf{M 1 *}$, A1*, E1* as per scheme
NB These marks only awarded if $\mathbf{1 0}$ used, not other values.
Use of k method with no probabilities quoted:
This gets zero marks.

Use of k method with one probability quoted:
Mark as per scheme
Line diagram method and Bar chart method
No marks unless correct probabilities shown on diagram, then mark as per scheme.
Upper tailed test done with $\mathrm{H}_{1}: \mathrm{p}>0.35$
Hyp gets max B1B1B0E0
If compare with 5% give SC2 for $\mathrm{P}(\mathrm{X} \geq 10)=1-0.8782=0.1218>5 \%$ and SC1 for final conclusion (must be 'larger than' not 'different from')
If compare with 2.5% no further marks B0B0M0A0E0
Lower tailed test done with H_{1} : $\mathrm{p}<0.35$
No marks out of last 5.

Question		Answer	Marks		Guidance
2	(i)	$3 \times \frac{5}{10} \times \frac{4}{9} \times \frac{5}{8}=\frac{300}{720}=\frac{5}{12}=(0.4167)$ $\begin{aligned} & \text { Or } \\ & \frac{\binom{5}{2} \times\binom{ 5}{1}}{\binom{10}{3}}=\frac{10 \times 5}{120}=\frac{5}{12} \end{aligned}$	M1 M1 M1 A1 [4] M1* M1* M1* dep A1	For 5/10×4/9 For $\times 5 / 8$ For $3 \times$ triple product CAO (Fully simplified) For $\binom{5}{2} \times\binom{ 5}{1}$ For $\binom{10}{3}$ For whole fraction CAO (Fully simplified)	Correct working but then multiplied or divided by some factor scores M1M1M0A0 Zero for binomial Allow M2 for equivalent triple such as $\frac{5}{10} \times \frac{5}{9} \times \frac{4}{8}$ Or 3 separate equal triplets added Answer must be a fraction Seen Seen Correct working but then multiplied or divided by some factor scores M1M1M0A0
2	(ii)	$\begin{aligned} & 4 \times \frac{7}{12} \times\left(\frac{5}{12}\right)^{3}+\left(\frac{5}{12}\right)^{4} \\ & =0.169+0.030=0.199 \\ & \text { Or }=\frac{875}{5184}+\frac{625}{20736}=\frac{1375}{6912} \end{aligned}$	M1FT M1FT M1FT A1 [4]	For first probability For (5/12) ${ }^{4}$ For sum of both correct probabilities CAO Do not allow 0.2, unless fuller answer seen first	Allow ${ }^{4} \mathrm{C}_{3}$ Provided sum <1 Alternative for $1-(\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2))$ allow M1FT for two 'correct' probs, M1 for sum of three 'correct', M1 for 1 answer, A1 CAO

Question		Answer	Marks	Guidance	
4	(i)	$\begin{aligned} & \mathrm{P}(X=15)=\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} \\ & ==\frac{6}{120}=\frac{1}{20}=0.05 \\ & \text { Or } \frac{1}{{ }_{6} \mathrm{C}_{3}}=\frac{1}{20}=0.05 \\ & \text { Or } \frac{3!\times 3!}{6!}=\frac{1}{20}=0.05 \end{aligned}$	M1 A1 [2]	For product of three correct fractions NB ANSWER GIVEN $\begin{aligned} & \text { NB } 1-(0.45+0.45+0.05) \\ & =0.05 \text { scores M0A0 } \end{aligned}$	Full marks for $3!\times \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}=\frac{6}{120}=0.05$ Allow 3×2 in place of 3 ! SC1 for $6 \times \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}=\frac{6}{120}=0.05$
4	(ii)	$\begin{aligned} & \mathrm{E}(X)=(15 \times 0.05)+(1010 \times 0.45)+(2005 \times 0.45)+(3000 \times \\ & 0.05) \end{aligned}$	M1	For $\Sigma r p$ (at least 3 terms correct)	
		$=1507.5$ so 1508 (4sf)	A1	CAO	Allow 1507, 1510, 1507.5, 1507.50 or 3015/2
		$\begin{aligned} & \mathrm{E}\left(X^{2}\right)=\left(15^{2} \times 0.05\right)+\left(1010^{2} \times 0.45\right)+\left(2005^{2} \times 0.45\right)+\left(3000^{2}\right. \\ & \times 0.05) \\ & \quad=2718067.5 \end{aligned}$	M1	For $\Sigma r^{2} p$ (at least 3 terms correct)	Use of $\mathrm{E}(\mathrm{X}-\mu)^{2}$ gets M1 for attempt at $(x-\mu)^{2}$ should see $(-1492.5)^{2},(-497.5)^{2}$, $497.5^{2}, 1492.5^{2}$, (if $\mathrm{E}(\mathrm{X})$ wrong FT their $E(X)$) (all 4 correct for M1), then M1 for $\Sigma \mathrm{p}(\mathrm{x}-\mu)^{2}$ (at least 3 terms correct with their probabilities) Division by 4 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $E(X)$ also divided by 4. Unsupported correct answers get 5 marks
		Var $(X)=2718067.5-(1507.5)^{2}$	M1	dep for - their $\mathrm{E}(\mathrm{X})^{2}$	
		$=445511.25$ so 445500 (4sf)	A1	FT their $\mathrm{E}(\mathrm{X})$ provided $\operatorname{Var}(\mathrm{X})>0$ (and of course $\mathrm{E}\left(\mathrm{X}^{2}\right)$ is correct)	Allow 446000
			[5]		

Question		Answer	Marks	Guidance	
5	(i)	Because if people cannot make a correct identification, then the probability that they guess correctly will be 0.5 For 'equally likely to guess right or wrong' or 'two outcomes with equal probability' or '50:50 chance of success’ or 'right one in two occasions on average' or 'two (equally likely) outcomes’ etc	E1 E1 [2]	For idea of a guess or 'chosen at random' For idea of two outcomes	NB The question includes the sentence 'She suspects that people do no better than they would by guessing.', so this on its own does not get the mark for the idea of a guess
5	(ii)	'Because people may do better than they would by guessing' or similar	B1 [1]	For idea of selecting correctly /identifying /knowing	No marks if answer implies that it is because there are over half in the sample who make a correct identification
5	(iii)	$\mathrm{P}(X \geq 13)=1-\mathrm{P}(X \leq 12)=1-0.8684=0.1316$ NB PLEASE ANNOTATE THE TOP AND BOTTOM OF THE EXTRA PAGE IF NOT USED $0.1316>0.05$ So not significant There is insufficient evidence to suggest that people can make a correct identification.	$\begin{gathered} \text { M1 } \\ \text { B1* } \\ \text { M1* } \\ \text { dep } \\ \text { A1* } \\ \text { E1* } \\ \text { dep } \end{gathered}$	For notation $\mathrm{P}(X \geq 13)$ or $\mathrm{P}(X>12)$ or $1-\mathrm{P}(\mathrm{X} \leq 12)$ For 0.1316 For comparison with 5\% NB Point probabilities score zero.	Notation $\mathrm{P}(X=13)$ scores M0. If they have the correct $\mathrm{P}(X \geq 13)$ then give M1 and ignore any further incorrect notation. Or for $1-0.8684$ indep of previous mark Allow 'accept H_{0} ' or 'reject H_{1} ' Must include 'insufficient evidence' or something similar such as 'to suggest that' ie an element of doubt either in the A or E mark. Must be in context to gain E1 mark. Do not allow 'sufficient evidence to suggest proportion making correct identification is 0.5^{\prime} or similar

| Question | | Answer | Marks | Guidance |
| :---: | :--- | :--- | :--- | :--- | :--- |

Question		Answer	Marks	Guidance	
6	(i)	$\begin{aligned} & \text { Median }=3.32 \mathrm{~kg} \\ & \mathrm{Q} 1(=6.5 \text { th value })=2.83 \quad \mathrm{Q} 3(=19.5 \text { th value })=3.71 \\ & \text { Inter-quartile range }=3.71-2.83=0.88 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & {[3]} \end{aligned}$	For Q1 or Q3 For IQR dep on both quartiles correct	For Q1 allow 2.82 to 2.84 For Q3 allow 3.70 to 3.72 If no quartiles given allow B0B1 for IQR in range 0.86 to 0.90
	(ii)		G1 G1 G1	For reasonably linear scale shown. For boxes in approximately correct positions, with median just to right of centre For whiskers in approximately correct positions in proportion to the box FT their median and quartiles if sensible guidance above is only for correct values	Dep on attempt at box and whisker plot with at least a box and one whisker. Condone lack of label. Do not award unless RH whisker significantly shorter than LH whisker Allow LH whisker going to 2.5 and outlier marked at 1.39
			[3]		
6	(iii)	Lower limit $2.83-(1.5 \times 0.88)=1.51$ Upper limit $3.71+(1.5 \times 0.88)=5.03$ Exactly one baby weighs less than 1.51 kg and none weigh over 5.03 kg so there is exactly one outlier.	B1 B1 E1*	For 1.51 FT For 5.03 FT Dep on their 1.51 and 5.03	Any use of median $\pm 1.5 \times \mathrm{IQR}$ scores B0 B0 E0 No marks for ± 2 or $3 \times I Q R$ In this part FT their values from (i)or (ii) if sensibly obtained but not from location ie 6.5, 19.5 Do not penalise over-specification as not the final answer Do not allow unless FT leads to upper limit above 4.34 and lower limit between 1.39 and 2.50

Question		Answer	Marks	Guidance	
		'Nothing to suggest that this baby is not a genuine data value so she should not be excluded' or 'This baby is premature and therefore should be excluded'.	E1* Dep	Any sensible comment in context	For use of mean \pm 2sd allow B1 For $3.27+2 \times 0.62=4.51$ B1 For 3.27-2 $\times 0.62=2.03$ Then E1E1 as per scheme
6	(iv)	$\begin{aligned} & \text { Median }=3.5 \mathrm{~kg} \\ & \mathrm{Q} 1=50 \text { th value }=3.12 \quad \mathrm{Q} 3=150 \text { th value }=3.84 \\ & \\ & \text { Inter-quartile range }=3.84-3.12=0.72 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	For Q1 or Q3 For IQR FT their quartiles	For Q1 allow 3.11 to 3.13 For Q3 allow 3.83 to 3.85 Dep on both quartiles correct If no quartiles given allow B0B1 for IQR in range 0.70 to 0.74
6	(v)	Female babies have lower weight than male babies on the whole Female babies have higher weight variation than male babies	E1 FT E1 FT [2]	Allow 'on average' or similar in place of 'on the whole’ Allow 'more spread' or similar but not 'higher range’ Condone less consistent	Do not allow lower median Do not allow higher IQR, but SC1 for both lower median and higher IQR, making clear which is which
6	(vi)	Male babies must weigh more than 4.34 kg			
		Approx 10 male babies weigh more than this.	M1*	For 10 or 9 or 8	Or 200-190, 200-191 or 200-192
		$\begin{aligned} & \text { Probability }=\frac{10}{200} \times \frac{9}{199}=\frac{90}{39800}=\frac{9}{3980}=0.00226 \\ & \text { or } \frac{9}{200} \times \frac{8}{199}=\frac{72}{39800}=0.00181 \\ & \text { or } \frac{8}{200} \times \frac{7}{199}=\frac{56}{39800}=\frac{7}{4975}=0.00141 \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { dep } \end{gathered}$ A1	For first fraction multiplied by any other different fraction (Not a binomial probability) CAO Allow their answer to min of 2 sf	Allow any of these answers For spurious factors, eg $2 \times$ correct answer allow M1M1A0 SC1 for $n / 200 \times(n-1) / 199$
			[3]		

Question			Answer	Marks		Guidance
7	(i)			G1 G1 G1 G1 [4]	For first set of branches For second set of branches (indep) For third set of branches (indep) For labels	All probabilities correct All probabilities correct All probabilities correct All correct labels for 'Hit' and 'Miss', ' H ' and ' M ' etc. Condone omission of First, Second, Third. Do not allow misreads here as all FT
7	(ii)	A	$\begin{aligned} & \mathrm{P}(\text { Hits with at least one })=1-\mathrm{P}(\text { misses with all }) \\ & =1-(0.9 \times 0.95 \times 0.95)=1-0.81225=0.18775 \end{aligned}$ ALTERNATIVE METHOD only if there is an attempt to add 7 probabilities At least three correct triple products Attempt to add 7 triple products FURTHER ALTERNATIVE METHOD $0.1+0.9 \times 0.05$ Above probability $+0.9 \times 0.95 \times 0.05$	M1* M1* dep A1 M1 M1 A1 M1 M1 A1 [3]	For $0.9 \times 0.95 \times 0.95$ For 1 - ans CAO CAO CAO	FT their tree for both M marks, provided three terms 0.188 or better. Condone 0.1877 Allow 751/4000 (not necessarily correct triple products)

Question			Answer	Marks		Guidance
7	(ii)	B	$\begin{aligned} & \text { P(Hits with exactly one }) \\ & =(0.1 \times 0.8 \times 0.95)+(0.9 \times 0.05 \times 0.8)+(0.9 \times 0.95 \times 0.05) \\ & =0.076+0.036+0.04275=\frac{19}{250}+\frac{9}{250}+\frac{171}{4000} \\ & =\frac{619}{4000}=0.15475 \end{aligned}$	M1 M1 M1 A1 [4]	For two correct products For all three correct products For sum of all three correct products CAO	FT their tree for all three M marks, provided three terms Allow 0.155 or better
7	(iii)		$\begin{aligned} & \mathrm{P}(\text { Hits with exactly one given hits with at least one }) \\ & =\frac{\mathrm{P}(\text { Hits with exactly one and hits with at least one })}{\mathrm{P}(\text { Hits with at least one })} \\ & =\frac{0.15475}{0.18775} \\ & =0.8242 \end{aligned}$	M1 M1 A1 [3]	For numerator FT For denominator FT CAO	If answer to $(B)>$ than answer to (A) then max M1M0A0 Both must be part of a fraction Allow 0.824 or better or 619/751
7	(iv)		$\mathrm{P}($ Hits three times overall $)=$ $(0.1 \times 0.2 \times 0.2)+(0.9 \times 0.95 \times 0.95 \times 0.05 \times 0.2 \times 0.2)$ $=0.004+0.0016245$ $=0.0056245$		For $0.1 \times 0.2 \times 0.2$ or 0.004 or $1 / 250$ For $0.9 \times 0.95 \times 0.95 \times$ $0.05 \times 0.2 \times 0.2$ For sum of both CAO	FT their tree for all three M marks provided three terms in first product and six in second product. Last three probs must be $0.05 \times 0.2 \times 0.2$ unless they extend their tree With no extras Allow 0.00562 or 0.00563 or 0.0056

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified, deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig.

PLEASE HIGHLIGHT ANY OVER-SPECIFICATION
Please note that there are no G or E marks in scoris, so use B instead

NB PLEASE ANNOTATE EVERY ADDITIONAL ANSWER SHEET EVEN IF FULL MARKS AWARDED OR THE PAGE IS BLANK

Additional notes re Q5 part iii

Comparison with 95% method
If 95% seen anywhere then
M1 for $\mathrm{P}(X \leq 12)$
B1 for 0.8684
M1* for comparison with 95\% dep on second B1
A1* for not significant oe
E1*

Comparison with 95\% CR method
If 95% seen anywhere then
B1 for 0.9423 or 0.9793
M1 for correct comparison with 95\%
M1dep for correct CR provided both probs correct
then follow mark scheme for CR method
Smallest critical region method:
Smallest critical region that $\mathbf{1 3}$ could fall into is $\{13,14,15,16,17,18,19,20\}$ gets $\mathbf{B 1}$ and has size $\mathbf{0 . 1 3 1 6}$ gets B1, This is > 5\% gets M1*, A1*, E1* as per scheme
NB These marks only awarded if $\mathbf{1 3}$ used, not other values.
Use of k method with no probabilities quoted:
This gets zero marks.

Use of k method with one probability quoted:
Mark as per scheme

Line diagram method and Bar chart method
No marks unless correct probabilities shown on diagram, then mark as per scheme.

